By introducing more and more precise examples, we take on little by little the generalization of the Q/D GreenLab equation.

5. Branching + Biomass + fruits only on branches

When trunk and branches do not bear the same number of organs³, equation (1) is written as follows

$$
Q(n) = \frac{E}{re} \frac{N_{\varphi 1}(n) n_{a1} p_{a1} + N_{\varphi 2}(n) n_{a2} p_{a2}}{D(n)} Q(n-1)
$$
 (8)

Demonstration

 $D_{\varphi 1}(n) = N_{\varphi 1}(n) \left(n_{a1} p_{a1} + n_{e1} p_{e1} \right)$ for organs of physiological age 1

 $D_{\varphi 2}(n) = N_{\varphi 2}(n) \left(n_{a2} p_{a2} + n_{e2} p_{e2} + n_{f2} p_{f2} \right)$ for organs of physiological age 2 (with fruits)

 $D_{\varphi 1}(n)$ = total demand of trunk phytomeres at *n* cycle $D_{\varphi 2}(n)$ = total demand of branches phytomeres at *n* cycle $N_{\varphi 1}(n)$ = total number of trunk phytomeres at *n* cycle $N_{\varphi 2}(n)$ = total number of branches phytomers at *n* cycle

The total demand is :

$$
D(n) = D_{\varphi 1}(n) + D_{\varphi 2}(n) = N_{\varphi 1}(n) \left(n_{a1} p_{a1} + n_{e1} p_{e1} \right) + N_{\varphi 2}(n) \left(n_{a2} p_{a2} + n_{e2} p_{e2} + n_{f2} p_{f2} \right)
$$

Let

 $d_{\varphi_2} = n_{a2} p_{a2} + n_{e2} p_{e2} + n_{f2} p_{f2}$ $d_{\varphi 1} = n_{a1} p_{a1} + n_{e1} p_{e1}$ $d_{\varphi 1}$ = demand of one trunk phytomere $d_{\varphi 2}$ = demand of one branch phytomere

Then

 $D(n) = N_{\varphi_1}(n) d_{\varphi_1} + N_{\varphi_2}(n) d_{\varphi_2}$

but

.

 $N_{\varphi 1}(n) = 1$; only one active phytomer on the trunk at cycle *n* (the last internode at trunk top) $N_{\varphi 2}(n) = n - 1$; there are *n -1* active phytomers on the branches at cycle *n* (corresponding to the apical internode of branches)

 3 In the following equations, phytomers numbered 1 are those of the trunk (physiological age 1), and the phytomers numbered 2 are those of the branches (physiological age 2)

We obtain $D(n) = d_{\varphi 1} + (n-1) d_{\varphi 2}$

If we take equation (1) that links total demand at *n* cycle and total supply at $n-1$ cycle

$$
Q(n) = \frac{E}{re} \frac{N_{\varphi_1}(n) n_{a1} p_{a1} + N_{\varphi_2}(n) n_{a2} p_{a2}}{D(n)} Q(n-1) = \frac{E}{re} n_{a1} p_{a1} \frac{Q(n-1)}{D(n)} + (n-1) \frac{E}{re} n_{a2} p_{a2} \frac{Q(n-1)}{D(n)}
$$

Let $k_1 = \frac{E}{re} n_{a1} p_{a1}$ $k_1 = \frac{E}{re} n_{a1} p_{a1}$ and $k_2 = \frac{E}{re} n_{a2} p_{a2}$ $k_2 = \frac{E}{m_{a2} p_{a2}}$, we have then

$$
Q(n) = \left(\frac{k_1}{d_{\varphi 1} + (n-1) d_{\varphi 2}} + \frac{(n-1) k_2}{d_{\varphi 1} + (n-1) d_{\varphi 2}}\right) Q(n-1)
$$

When $n \rightarrow \infty$ the first term tends to 0 and the second tends to 2 2 $d_{\scriptscriptstyle\varphi}$ $\frac{k_2}{\cdot}$. Then $Q(n) \rightarrow \frac{k_2}{\cdot} Q(n-1)$ $\dot{2}$ $\rightarrow \frac{R_2}{d_{\varphi 2}} Q(n Q(n) \rightarrow \frac{k}{n}$ φ .

$$
\lim_{n \to \infty} Q(n) = \frac{E}{re} \frac{n_{a2} p_{a2}}{d_{\varphi 2}} Q(n-1)
$$

If
$$
\frac{k_2}{d_{\varphi 2}} = 1
$$
 then we have progressively $Q(n) \rightarrow Q(n-1)$

And if $E = 1$, $n_{a2} = 1$, $p_{a2} = 1$ then $re = 1$ when $n \rightarrow \infty$

Numerical application

For this example model, trunk phytomers bear one leaf, the first internode of branches and the branches phytomers bear one leaf and four fruits. *What are the sink strengths of trunk internodes, branch internodes and fruits (of branches) at equilibrium?* $(E = 1, r = 10, e = 0.05)$

