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Dynamic modelling

1.1 Introduction

Science is concerned with prediction. We can predict only by virtue of having
models or conceptual schemes of the world. The models we use today are those
conjectures that have best survived the unremitting criticism and scepticism that
are an integral part of the scientific process. There are (it is assumed) no new
processes under the sun, but our models of these processes have allowed mankind
to transform its corner of the universe. Science is commonsense; it is also an
unpredictable, fascinating, and thoroughly human activity. These are simple
truths, self-evident to the practising scientist, but they need frequent repetition,
especially at a time when the scientific community is increasingly assailed by
politicians or other careerists who, while enjoying the fruits of science, would
deny its methods (Thornley and Doyle 1984).

Plant and crop modelling has, broadly speaking, two aims. The first, and here
we nail our flag clearly to the mast, is to increase knowledge in this area of science.
Historically, increasing knowledge has led to unpredicted (in detail) and enor-
mous benefits to the human race, and there is no reason why this should not
continue. The second aim might be called ‘applied’ and ‘strategic’ in today's
terminology, and is directed at the solution of currently perceived problems in
the short to medium term. Given present agricultural and horticultural practice,
one can envisage many uses for models of plant and crop growth, which could
increase efficiency, improve the environment, and generally contribute positively
to life. There is then, no difficulty in defending the practice of the techniques,
ideas, and approaches which we are about to expound.

Scientific knowledge is not only about observational data, but also about

~ having a theory {or hypothesis, or conceptual scheme, or model) that corresponds

to the data. It is the continual interaction between hypothesis (how we think

things work) and observational data (how they actually do work) that leads to
_ progress. With the passage of time, measurements become more accurate and

more extensive; similarly we are continually widening the scope of our theories
- and demanding more accurate predictions from them. When comparing theory
with experiment, we attempt to connect the theory to nature at as many points
- as possible and as precisely as possible. As a branch of science progresses from
-~ the qualitative to the quantitative, one day it may be expected to reach the point
where the connections between theory and experiment are most efficiently made
“using the language of mathematics. It is to be emphasized that the ideas and
“hypotheses of the theory are not contributed by mathematics. Mathematics is
used as a tool or language, enabling biological scientists to express their ideas
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so that quantitative prediction is possible, and these predictions are then com-
pared with observational data.

Agricultural and horticultural practice is based partly on tradition, partly on
scientific knowledge, and partly on conjecture or guesswork. By tradition we
mean an inherited folk-wisdom or set of customs where things are done because
it is known that they work to a certain degree, but it is not understood why, or
whether better results might be obtained by doing things a little differently. The
formal knowledge of science can give a rationale for decision-taking when
probiems fall within the scope of current knowledge. Conjecture is also needed
because, from time to time, a novel situation arises, there is no guidance from
current knowledge on what to do, and yet a decision has to be taken. One purpose
ofagricultural research is to increase the knowledge-based component of agricul-
tural decision-taking at the expense of the other two components. Increased
knowledge does not necessarily lead to higher efficiency, but it may uncover more
efficient options. With present agricultural practices, and other things remaining
equal, the current efficiency of production provides a baseline from which it is
only possible to move forwards. Equally important is the fact that increases in

scientific knowledge allow a more rational response when other things do not -

remain equal, when the environment in which the farmer operates, natural or
man-made (if this dubious distinction is permitted), changes.

Mathematical models can contribute to both of the aims discussed in the
second paragraph of this section; that is, enlarging knowledge and helping with
practical applications. Not only can models encapsulate knowledge, but, suitably
programmed for the increasingly ubiquitous computer, they can also make this
knowledge accessible to and usable by the non-expert. While the research worker

delves ever more deeply into the minutiae and mechanisms of phenomena, it ~

seems that technical developments will continue to make this detailed knowledge
ever more easily available to the non-specialist farmer and farm adviser.

As with many things in this good life, there are models and models. Mostly,
this book is concerned with dynamic deterministic models: dynamic models
predict how a system unfolds with the passage of time—the time course of events; ;
deterministic models make definite predictions (e.g. on 1 July the dry matter per
unit area of the wheat crop will be 1 kg m™2) without any associated probability
distribution. Even dynamic deterministic models come in three types, demon-
strating yet again the richness of science and the diversity of approaches possible.
We call these types teleonomic, empirical, and mechanistic, although some would
choose a different terminology. In terms of the organizational hierarchy of levels.
to be discussed later, teleonomic models look (mostly) upwards to higher levels,
empirical models examine a single level, and mechanistic models look down-
wards, considering a level in relation to lower levels. Teleonomic models are.
sometimes called teleological or goal seeking. Empirical models belong to the
category associated with curve fitting, regression, and applying mathematical
formulae directly to observational data, usually without being constrained by

scientific principles or any knowledge of mechanism. Mechanistic models are |
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reductionist, concerned with mechanism, and integrative; they contribute under-
standing, and are sometimes called explanatory. In any given investigation, the
objectives of the enterprise should determine what modelling approach, if any,
can be used. It is therefore important to understand how these different types of
model relate to each other and to the structure of the problem, and this is the
main concern of the next section.

De Wit (1970) gives an excellent early account of concepts in the crop model-
ling area, which are also discussed by Thornley (1976, 1980).

1.2 Hierarchical systems

Biology, including plant biology, is notable for its many organizational levels,
Whereas in physics and chemistry one travels more or less directly from atomic
and molecular behaviour to that of liquids and solids, in biology there are several
intervening organizational entities. It is the existence of the different levels of
organization that gives rise to the great diversity of the biological world. For the

plant sciences, a typical scheme for the hierarchy of organizational levels is as
follows.

Level Description of level
i+1 crop
i plant
i—1 organs
tissues {1.1a)
cells
organelles
macromolecules

molecules and atoms

The levels that are of principal interest to this book are labelled i + 1,i,andi — 1.
Using this diagram, we shall pinpoint the differences in viewpoint associated with
the empirical, mechanistic, and teleonomic approaches to modelling, but first we
discuss the principal properties of a hierarchical system.

Hierarchical systems have several important properties.

1. Each level has its own language, which is unique to that level. For example,

the terms crop yield, leaf area, or whole-plant dry mass have little meaning at
the cell or organelle levels.

2. Each level is an integration of items from lower levels. The response of the

system at level i can be related to the responses at lower levels. This is scientific
reductionism, and leads to mechanistic models.

3. Successful operation of a given level requires lower levels to function properly,

- but not vice versa. For example, if a cup is smashed to small pieces, it will no

longer function as a cup, although the molecular interactions are hardly
altered.
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4. *lj’m ﬁ%gmr levels provide the constraints, boundary values, and driving func-
~ tions, mcluding any inputs and outputs, to the lower levels.
5. On descending to a lower level, generally both the spatial and temporal scales

become smaller; this corresponds to smaller physical size and to faster pro-
cesses at the lower levels.

V21 Empirical models

Empirical models are essentially direct descriptions of observational data, but
they can, none the less, be exceedingly useful. The well-known saying ‘red sky at
night, shepherd’s delight” has helped in the planning of many harvesting activities
and family picnics. The tables that describe the tides round our coastlines are
constructed by totally empirical methods. In an empirical model, any mathe-
matical relationships that are written down are usually unconstrained by phys-
ical laws such as that of energy conservation or the laws of thermodynamics, by
biological information, or by any knowledge of the structure of the system. The
empirical modeller attempts to describe level i behaviour (observational data) in
terms of level i attributes alone, without regard to any biological theory. The
ag\xg)x'cw;h is primarily one of examining the data, deciding on an equation or set
of equations, and fitting these to the data. Essentially, an empirical model
re-represents the data, perhaps more conveniently, and no new information is
acguired.

in F@; L.1 a simple example of an empirical mathematical model is given. The
observational data shown give the response of crop yield Y to the level of fertilizer

N applied. Often such data can be fitted by a three-parameter rectangular
hyperbola

i {N; + N)
VooV oS
K 4+ (N, + N) (1.1b)

Cropyield Y
*

Nitrogen fertilizer level N

. A simple empirical model of the response of crop yield Y to nitrogen fe
. observational data; —, eqn (1.1b).
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where Y,,, is the maximum value of yield Y at high N values, N; is the effective
residual soil nitrogen which gives a yield at N =0, and K is a parameter
determining the initial slope of the Y : N response at N, + N = 0. Also shown in
Fig. 1.1 is the curve obtained by fitting eqn (1.1b) to the observational data and
adjusting the parameters.

The important point to recognize is that the fitted curve (or empirical model)
contains no information beyond the original data; it says nothing about the
mechanisms that give rise to the response (for which a mechanistic model of the
system would be needed), or why the response is as it is in terms of possible
goal-oriented behaviour of the plant (we use ‘why? in the ‘for what purpose?”
sense); for the latter a teleonomic model would be appropriate. Empirical models
can provide a powerful means of summarizing data and interpolation, and may
provide a practical tool for the farmer or farm adviser. Traditionally much
agricultural research has been of a descriptive nature, and a great deal of essential
groundwork has been done using empirical models. However, our thesis is that
the needs of the subject are changing, and it is now timely to seek mechanistic
explanations and an understanding of these responses by means of models that
integrate the underlying mechanisms.

1.2.2 Mechanistic models

The main concern of this book is with dynamic deterministic models that are
concerned with mechanism and can lead to an understanding of the ith level
(1.1a) that is based on component processes at the (i — 1)th level, and possibly
at lower levels. The mechanistic modeller attempts to construct a description of
level i behaviour which has some extra content of mechanism, understanding or
explanation at lower levels. Mechanistic modelling is *hard’ science, and it follows
the traditional reductionist method that has been so very successful in the
physical sciences, molecular biology, and biochemistry. As shown in Fig. 1.2, in
contrast with the empirical modeller who proceeds directly to the whole-plant
variables that are of interest and may connect these in whatever way seems best
to fit the data, the mechanistic modeller goes round a relatively circuitous route:
under analysis and reduction he breaks the system down into components and
assigns processes and properties to these components; this introduces extra
variables at the (i — 1)th level, and additional observational data are generally
also available at the (i — 1)th level; finally, it is by the integration of the set of
equations that define the system that the responses at the whole-plant level are
synthesized.

A mechanistic model of responses at a certain hierarchical level is always far
more complex than an empirical model; it will generally fit the data at the ith
level less well because it has many constraints built into its structure by means
of the assumptions of the model. However, its contenf  ar richer in that it
applies to a greater range of phenomena, relating them W'Cach other. Because
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Empirical modelling
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Analysis Integration
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Mechanistic modelling

o
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Level il :
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Aggregated
biochemistry

Fig. 1.2, Mechanistic and empirical modelling,

of this, s mechanistic model always offers more poésibiiities for manipulating and
mmproving the system, ‘
Some have questioned whether integration of knowledge at the (i — 1)th level

can indesd give rise to new knowledge at the ith level. Is the whole more than

the sum of its parts? Are there ‘emergent’ properties? There is, in our view, no

doubt about the answer to this question, Shakespeare was more creative thax; '
the proverbial monkey at a typewriter because of the way in which he assembled

familiar words and phrases into new patterns. The same is true in music. In the

sciences, the juxtaposition of well-known components to give rise to new results
tor ‘emergent’ properties) has occurred again and again. The mathematician

Turing showed that diffusion combined with chemical reaction could generalte
patterns-—a result that has been most valuable in studies of morphogenesis
{Chapter 19), The kinetic theory of gases with all its ramifications is a con-
sequence of a few very simple assumptions at the molecular level. The theories
of the atmosphere are becoming steadily more successful and yet, at base level,
nothing has changed. The special theory of relativity is a consequence of attributs
ing a constant velocity of light to all vacuum reference frames—this seems
imnocuous enough, and yet the results of the ensuing analysis are stupendous.
The whole is more than the sum of the parts, and yet it is explainable in terms
of the parts and how they interact. The post-war progress in molecular biology
and biochemistry indicates that a reductionist programme is applicable to all
areas of biology, even including value systems and religion (Monod 1972). An
explanation of the responses, behaviour, and mechanisms of an organism does
not mean that the particular combination of mechanisms that gives rise to the
observed responses and behaviour could have been predicted. Even with deter-
ministic equations, the prediction of a detailed time course may be toull_]
unrehiable, owing for instance to sensitivity to initial conditions, as with chn?hc
systems. The range of future possibilities may be so great that the particular time

T T et =
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Light interception
and photosynthesis

by shoot
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: application N
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nitrate reduction pool Leaching,
T mineralization

Fig. L3, Elements of a possible mechanistic model of response of crop yield Y to fertil

izer
fevel N,

- tourse followed is unpredictable, and yet it is explainable in terms of established

mechanisms.

InFig. 1.1 and eqn(1.1b), an clementary empirical model of crop yield response
to fertilizer is given. In Fig. 1.3, a possible mechanistic approach to this problem
is shown. There are usually several ways in which a system might be analysed

"i:nxa components. There are no hard and fast rules. One attempts to incorporate

the ‘important’ components in the model, to make ‘reasonable’ assumptions, and
tostrike the right balance between complexity, tractability, and realism commen-
surate with the overall objectives. If possible, elegance is also part of the structure.
Modelling is partly an art form, although hopefully the end result is of scientific
value. Metaphysics has been the precursor to much good science. Conjecture (or
guesswork) is needed because there are many areas of ignorance. Individual
scientists will always assign different weights to the various ingredients in the
mu. hence the variety of crop models that exists. In biology, most models are
simplifications and are therefore wrong at some level of detail (this is less true of
models in physics and chemistry). Therefore critics can always legitimize their
reasons for rejecting a model. A model should be criticized mostly in relation to
the stated objectives. The strengths of the model, which should enable the
modelling objectives to be met, ought to be emphasized more than the weak-
nesses, which should not detract appreciably from the model’s performance in
rglmion to the stated modelling objectives. However, a different investi gator with
different objectives might find those weaknesses unacceptable.

: Frequently, people will talk about the ‘complexity’ of a model, and yet there
% N0 consensus about what is meant by this term. Possible measures of com-
plexity might be the number of state variables (p. 15), the number of parameters,
Ihe topology of the system diagram (as in Fig. 1.3) with perhaps the number of
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closed loops or cycles, the level of mathematics required (partial differential
tquations, perturbation theory or topology may be regarded as ‘complex’ or
‘difficult’), or even the computing power needed to generate solutions. Generally,
in a 'good” model, only significant parameters are retained—those that have an
appreciable effect on the solutions or the scope of the model. Thus we choose
the number of parameters as the best measure of model complexity.

Sometimes, it is said that a situation is ‘too complex’ to model, or that not
enoughis known about the system to build a model. Yet often, we model because
it is the only way of grappling with complexity, or we model in order to define
what we do not know about the problem. Complex situations with uncertain
outcomes, which are common in agriculture and biology, are ripe for modelling,

Models can also be used to caleulate physiologically meaningful parameters
which are not accessible to direct observation. For example, plant and root
respiration parameters can he obtained by analysis (Chapter 11, Sections 11.3
and 11.5). In physics and chemistry, there is a well-established tradition of finding
quantities such as the mass of the electron, or the activation energies of reactions,
by indirect methods using a model,

Let us assume we have a model {empirical or mechanistic) with n parameters.
The model makes predictions for the m values of some observable quantity Y,
Vo= 1,2, .. m These predictions can be compared with the corresponding
observational data y,, i = 1,2,...,m Regarding the n parameters as all adjustable

and as having been adjusted to give the best fit to the observational data, the -

estimated mean square prediction error (MSPE) can be written as

mofy — Y2
MSPE.= ¥ QL.M}Q_

{=y M —n

(1.2a)

Figure 1.4 shows schematically how we might expect the MSPE for empirical \

and mechanistic models to vary with the complexity parameter n. The empirical
madel (EM) is applied to a given set of observational data at the organizational
level i (1.1a), as the complexity » of the model (as measured by the number of
parameters) is increased, the observational data base m remains the same. Even-
tually the data are being over-fitted, and the MSPE, after initially decreasing,
increases again. The situation with the mechanistic model (MM) is rather differ-
ent. To begin with, for low numbers of parameters and with roughly the same
data base, MM will always give a worse fit because it is constrained by the
structure and assumptions of the model, whereas EM is ‘free’. As model com~

plexity increases (with increasing n), the observational data base increases; there
are data at the level of the assumptions of the model, and the model can now be

tested at the level of the assumptions (i — 1) as well as at the level of its predictions
{1} Thus the MSPE for MM can decrease with increasing complexity, but may
now conceivably approach an asymptote. It may be argued that in comparing
empirical with mechanistic models in this way, like is not being compared with
like, and this is correct since the scope of the mechanistic model is allowed lo

T T W e - R e

Dynamic modelling I

MSPE

L

Complexity n of model (number of parameters)

Fig. 14, Rclativc predictive ability of empirical (EM) and mechanistic (MM) models, The
hypqthencal dependence of the mean square prediction error {MSPE) on model com-
plexity, represented by the number of parameters n, is shown,

increase with increasing complexity, whereas this is not the case for the em pirical
model. However, this is generally the manner in which empirical and mechanistic
models are developed and applied.

1.2.3 Teleonomic models

From time to time in this book, a third class of model is used or referred to--
tglconomic models. Such models may be relatively unfamiliar to the plant scien-
tist, and although they only play a minor role currently in plant and crop
modelling, this could expand, and it is important that the teleonomic viewpoint
beappreciated and understood (Monod 1972) including the relationship between
teleonomic models, empirical models, and mechanistic models,

Teleonomic models are applicable to goal-directed behaviour, and are formu-
lated explicitly in terms of goals. These models may refer to a single level, say

- the ith level; they may provide a teleonomic interpretation of an otherwise
empirical model,; they may also refer responses at the ith level to the constraints
~provided by the (i + 1)th level (p- 5). The goals of level i can be viewed as the
. fequirements imposed by level i + 1. It is the higher-level constraints which, via

fvolutionary pressures, can select out combinations of the lower-level mechan-
18ms of biochemistry, which may lead to apparently goal-directed behaviour at

level i. We give two examples of possible teleonomy in plant growth and develop-

ment (see also Chapter 7, Section 7.6, p. 193),

- Dry-matter partitioning is an aspect of most plant and crop growth models,

and it can be approached by the modeller in various ways. For root : shoot

partitioning all three kinds of model exist: empirical, teleonomic and mechanistic.

thapler 13 considers the topic in detail, and here we give a brief qualitative
ion to illustrate general modelling issues, The empirical approach is to
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mensure (say) root : shoot partitioning for a variety of situations of both environ-
ment and plant. These observational data provide the basis for an empirical
model of root : shoot partitioning. However, there have been various attempts
o interpret these measured responses in terms of goal-directed behaviour of the
plant. An early suggestion was that the root : shoot ratio adjusts so as to maintain
A tonstant carbon : nitrogen ratio in the plant. Another suggestion is that the
root : shoot ratio and the carbon nitrogen ratio both adjust so that they are
proportional to each other. The observational data are not of sufficient quality
o discriminate unambiguously between these alternative teleonomic interpreta-
tions, but nevertheless such goal-directed models have been incorporated, with
a degree of success, into some crop-growth models. However, we can go beyond
a direct teleonomic interpretation of observational data, and attempt to con-
struct a teleonomic model of root : shoot partitioning by hypothesis. For ex-
ample, it can be assumed that plants have evolved controls so that, when the
plant is faced with a given environment, new material is allocated to the shoot
and to the root in such a way that the plant attains an optimal specific growth
rate in that given environment. This then leads to a teleonomic partitioning
model. A goal-oriented model at the (i — 1)th level (the organ level) has been

constructed by assuming that, at the ith level (the plant level), the plant has

certain ‘requirements’ such as optimizing the plant specific growth rate; it is of
course assumed that the diversity of possible mechanisms at the lower levels is

able to satisfy these requirements. The teleonomic model can be written directly

m terms of the lower-level mechanisms, giving a mechanistic model which is more

complicated than the teleonomic representation but is ‘objective’ in its operation

(as are the laws of physics and chemistry),

Phyllotaxis is the second example we consider (Chapter 19). It is especially
interesting because it appears to be a case where mechanistic models of the
problem and teleonomic models deduced from the ‘requirements’ of the plant

both lead (o Fibopacei arrangements for leaves around a stem or for seeds in a

flower-head. It is an observational fact that leaves in plants and seeds in flower-
heads are often positioned so that they are separated from adjacent members
by the Fibonacci angle. The teleonomic view of this is as follows. It is assumed:
that the plant ‘requires’ optimum interception of light from the azimuth by its

icaves; this assumption leads to the Fibonacci angle. Also, if it is assumed that :
the plant ‘requires’ optimum packing of seeds in flower-heads {thus maximizing .

the number of seeds), an analysis again leads to the Fibonacci angle. Thus, in
this case, the Fibonacci model is derivable from an assumption about the goals
of the plant. There are two mechanistic approaches to modelling phyllotaxis—
giving rise to models that in both cases generate successive primordia (leaves
or seeds). One i1s a ‘contact’ theory, and works with the ‘next available space’;
the second is a diffusion-reaction model involving a postulated morphogen.
Both are able to generate Fibonacci patterns of primordia. Thus, in this case,

mechanistic considerations lead to patterns that also satisfy teleonomic
requirements,

!'
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1.3 Research models and applications models

The question that is addressed in this section is this: are there important differ-
ences between models constructed for an applications purpose and models
used in research? The term ‘application’ means here application in agricultural
production. Models of plant and crop growth are, potentially at least, capable
of being used by farmers, farm advisers, horticulturalists, and even enthusiastic
amateurs. A good crop model that encompasses response to environment and
also controllable inputs such as fertilizer levels and irrigation could provide a
valuable tool for crop management.

The answer to the question posed in the first sentence above is an emphatic
‘ves'. Although in time research models may evolve into applications models,
when they achieve the latter state, they may cease to be of value in research. With
a research model, aimed at improving understanding, much progress can be
made with a model that fails to describe correctly what is happening. Part of the
value (and the enjoyment) of modelling is that it is possible to speculate inexpen-
sively and try out various ideas. Sometimes, after a perhaps long and arduous

- progression round and round the cycle of conjecture, prediction, and observa-

tion, one arrives at a set of hypotheses that are compatible with current observa-
tional data.

However, if an applications model is to be successful {which means being used),
it must give predictions and guidance that are demonstrably better, in some wa Y,
than existing practice. All models, whether oriented towards research or applica-

 tions, are based on a mix of observational data, currently accepted knowledge,
and conjecture. While it may be desirable for a research model to have a high

proportion of conjecture, an applications model must clearly be as firmly founded
as possible on data and knowledge that are relatively secure. If an applications
model were to fail, this could put into Jeopardy the livelihood of many people.
The failure of a research model has no such consequences.

- Table 1.1 summarizes the principal differences that usually exist between
research models and applications models. Since empirical models are related
directly to observational data, and are often mathematically and computa-

tionally simple, applications models for farm management purposes frequently
“have a high content of empiricism. As increasing user sophistication demands a

wider range of applicability and scope of these models, it may well be that more
mechanistic models prove to be the best way forward, although such models
must always be carefully evaluated under the conditions where they might be
applied. Sheer empiricism can require almost infinite experimental resources in
complex input-output situations. Also, empiricism on the ith level alone may be
very inefficient in ignoring the ever-widening base of physiological and bio-
chemical knowledge at the lower levels. The possible benefits of application to
the problems of agriculture and the environment provide a good reason for
continuing with basic and strategic research. While crop management may

continue to use refined empirical models for some years, we believe that con-
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Table 1.1. Research models and applications models: a comparison of the
principal differences

Research Applications
Hypotheses Speculative Well-accepted
Connections to observational data Tcn}zous (often) Good
Aczuracy of predictions Variable Gom%
Scope Wide gcstrxctcd
Complexity Complex Sxmp}g
Type Mechanistic Empirical

tinued progress in the area depends on pursuing a long-term strategy of develop-

ing more mechanistic models, although such models may often be simpliﬁeq for
practical application. A mechanistic model must always uncover more options
than an empirical model. Until such models have been successfuny: constructed
and evaluated, there will remain areas of ignorance that neither science nor the
practitioners of agriculture can afford to leave undisturbed.

1.4 Mathematical models: objectives and contributions

There are many roles for modelling work in biology and i_n the plant and crop
sciences. When undertaking a modelling project, the most important need is for
a clearly defined and realistic set of objectives. It would be wasteful to construct

a complex mechanistic model where an empirical approach would better meet

the reguirements. Since objectives are linked to potential contrihutir:ms, we list
some of the possible objectives and potential benefits associated with mathe-

matical modelling. The abbreviations EM for empirical model and MM for

mechanistic model are used.

L. Hypotheses expressed in mathematical terms can provide a quantitative de-

seription and mechanistic understanding of a biological system (MM).

2. A model requires a completely defined conceptual framewprk, and this‘ may
pinpoint areas where knowledge is lacking, and perhaps stimulate new ideas

and experimental approaches {MM).

3. A mathematical model, especially if implemented in an casy-to-use computer

program, may provide an excellent recipe by which recent research knowl-
edge is made available to the farm manager or adviser (EM mostly, some
MM).

4. Agro-economic models may highlight the benefits of new crop management

techniques suggested by recent research, thereby stimulating the adoption of

more efficient production methods (MM, EM).

3. Modelling may lead to less ad hoc experimentation, as models may make. it
possible to design experiments to answer particular questions, or to dis_

criminate between alternative mechanisms (MM, EM).

e
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6. In a system with several components, a model provides a means of bringing
together knowledge about the parts, giving an integrated view of whole-
system behaviour (MM),

7. Modelling can provide strategic and tactical support to a research pro-
gramme, motivating scientists and encouraging collaboration {(MM).

8. A model may provide a powerful means of summarizing data, and also a
method for interpolation and cautious extrapolation (EM mostly, M M.

9. Observational data are becoming more precise, but also more expensive to
obtain; a mathematical model may be able to make more complete use of
such data (EM, M M).

10. The predictive power of a successful model can be used in many ways. For
instance a model can be used to answer ‘what if .. ¥ questions. What are the
consequences on crop production of halving the maintenance requirements
of plant tissue? What are the effects on crop yields of changing within-plant
transport resistances? However, it should be remembered that the answers
given by a model are, in a sense, built into it by hypothesis. Thus a model
can be used to stimulate thought, but it may be dangerous to use a model
to manage a research and development programme (MM).

Any given model is only likely to contribute under two or three of these ten

* points. However, this list indicates the many possible reasons for undertaking
" modelling work.

L5 Deterministic dynamic differential equation models

Itis assumed that the state of the system under investigation at time ¢ is defined
by g variables X 1 Xy .0, X,; these q variables are called state variables. The g

_State variables are independent; that is, it is not possible to derive one of the state

variables, X, say, from a knowledge of the vajues of the other state variables,
The state variables Tepresent properties or attributes of the system being con-
sidered (such as dry matter, number of cells, leaf area, starch content, etc.). The
choice of state variables is the first and most important assumption that the
modeller makes. The scope of the model is defined by its state variables.

The next step is to construct the q first-order ordinary differential equations
that describe how the q state variables change with time . These can be written
formally ag

dXx .
& ALK, X PR

dx,

ar = XL Xy, X PR (1.3a)

dx
o =X X, X PR,

The £y, £, ..., J, denote functions of the state variables, of a number of parame-
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ters which are indicated by P, and of environmental quantities denoted by E.
Equations (1.3a) are called ‘rate-state’ equations, and they show how the rates of
change of the system state variables depend explicitly on the current values of
the state variables. In plant and crop models it is helpful to indicate explicitly
the presence of parameters and environmental quantities in eqns (1.3a) by P
and E.

Writing f,(X, X,,..., X « P; E) does not mean that the function /, must con-

ables. Consequently, although the use of explicit time dependence in the rate-
state equations can be viewed as a device that is sometimes convenient and can
usefully simplify the model, it may impose an undesirable external constraint on
the dynamics of the system.

From eqn (1.4a), we could expand the set of state variables by defining a second
state variable Y by

Y=5b-—1 (1.4b)
tain all the state variables, parameters, and environmental uantities; the rates e o I -
of change of most state mrigbies will not depend directly upgn the environment, from which ¢ is casily eliminated by a single differentiation, giving
and it would be usual for the rate of change of a given state variable to depend day ) ith Y =batt=0 (1.40)
only upon two or three other state variables. Denoting a single state variable by dr with ¥'=batt=0. :
X, we can write its rate-state equation as L .
The time-independent rate-state equations are now
dx ‘
= inputs - outputs; (1.3b) %? XY and (g -1 (1.4d)

the inputs are the terms that contribute positively to the rate of change of X, and
the outputs contribute negatively. Each term on the right-hand side of eqn (1.3b)
gives the rate of a process. In the plant sciences, all processes are either transport
or chemical conversion. For example, eqn (1.3b) could take the form

Equation (1.4a) can be integrated quite easily, since the variables are separable,
to give

X = Xaexp{ ......... = 1 (1.4¢)

= e - gla — X (1.3¢c) o ‘ F
de where X = X, at ¢ = 0. This function is known as the exponential quadratic
(Chapter 2, eqn (2.15d), Fig. 2.12a, pp. 69, 70; Chapter 3, eqn (3.7d), p. 87), and is
sometimes employed in plant-growth analysis. As used in plant-growth analysis,
eqns (1.4a) and (1.4e) are rightly regarded as ‘empirical’ or ‘curve-fitting’ ap-
proaches. However, eqns (1.4d) may permit a more mechanistic biological inter-
pretation (namely, that there is some component of the growth machinery that
is steadily being depleted (see Chapter 2, Fig. 2.10, p. 66)).
The Gompertz growth equation in differential form is

¢ stands for a constant production of X, the second term on the right for a
Michaelis—-Menten-like utilization of X (Chapter 2, p. 51) where k and K are

parameters, and the last term stands for a diffusive-like transport of X (Chapter
4, p. 95) where g and a are parameters.

L5.1 Explicit time dependence

Suppose that one of the rate-state equations (1.3a) takes the form aw = po We ™" with W = W, at 1 = 0, (1.4f)
dx dt
s aX(b -1 (143) where W is the state variable (denoting dry matter) with initial value W, and

and D are constants (Chapter 3, eqn (3.5d), p. 80, and Fig. 3.4). The pmblem of
putting eqn (1.4f) into a two-state-variable formulation without explicit time
dependence is posed in Exercise 1.1.

where a and b are constants. Here, the time variable appears explicitly on the
right-hand side of the equation. In eqns (1.3a) as written the time variable ¢ does
not appear explicitly on the right-hand side of the equation (excluding its possible
appearance in the environmental specifications in E). Generally speaking, it is
not sound scientific methodology to include ¢ directly in the rate-state equations.
The system is completely specified by the set of state variables and does not
‘know’ what the time is, although one or more state variables may effectively be
keeping track of time. However, the elimination of one or more state variables
may lead to a reduced set of rate-state equations with explicit time dependence;
thus explicit time dependence can be viewed as representing hidden state vari-

1.52 Memory functions and delays

Consider a two-state-variable problem with state variables X and Y, as in eqns
{1.4d). The differential equation for X can be written

dXx
5 = h&E T, (1.5a)
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where f, denotes some function, Sometimes we wish to make the current value
of d X/dt dependent upon the value of a variable at some time in the past, say a
time period t ago. This remembered variable could itself be X affecting dX/ds,
so that eqn (1.5a) becomes (we use /i to denote a function)

#

%ﬁmmﬁﬂmeQX&~ﬂ1 (1.5b)

Alternatively, the remembered variable affecting d X /dt might be Y, giving

dX . )
O = AIXO, YW, Y - 1),

(1.5¢)
For either of the above equations, we can denote the remembered variable as Z,
which 1s computed from past values of one or more of the state variables of the
system, and eqns (1.5b) and (1.5¢) can be written simply as (omitting Y)

d.X

5 = X2 (1.5d)

The remembered variable Z is in general obtained by an integral computed over

the entire past history of the system up to the present:
1
Z = j g{X)dr, (1.5¢)
O
where g denotes the memory function and t' is a dummy time variable.
The Dirac delta function dlx), where x is a variable, can be thought of as a
very sharp spike of unit area at the origin x = 0, which is zero everywhere else.
It is defined by the equation {x"is a dummy variable)

S{x) = ff{x’)é(x - x"}dx’.

at 5" = x. When the Dirac delta function is used, the discrete memory function
which remembers the value of state variable X at time period t ago is given by

¥
L= X{t — 1) = f Mt — v — )X (") dr. {1.5g)
O
Instead of (and perhaps more realistic than) remembering a value of X at some
instant in the past, one might remember some weighted average of past values.
Equation (1.5g) is replaced by
&

2ty = J' wit — )X (t)dr, (LShj

where wisa weighting function. (See Exercise 1.2} .
In the last section, in the discussion of explicit time dependence, it was said

(1.5)

The deita function 8(x) just selects out the value of f where the spike occurs, i.e.

e

e
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that the system cannot ‘know’ what the time is, and a representation with more
state variables can always be found which does not have an explicit time depen-
dence. It is similar here for ‘remembered’ variables. The only way in which a
system remembers a variable is through other variables, and so, again, a represen-
tation can always be constructed which does not have remembered variables but
which may be considerably more complicated. For example, eqn (1.5g) can be
represented by a large number of intermediate variables I;, as in the scheme

Xoli=l w7 (1.51)

This compartmental scheme, which can be regarded as a delay line or a pipe with
plug flow, can be equivalent to a discrete delay (see Chapter 7, Section 7.3.4,
p-177, and eqn (7.7d) et seq.).

L6 Numerical integration

For ali but the very simplest models, eqns (1.3a) can only be integrated numer-
ically. This requires specification of the initial values X ¢ at time t =0, the
parameters P and the environment E; the results of the numerical integration

- are the values of the state variables X, at any subsequent time 1. Computing

technology has transformed numerical methods and now provides the facility to
solve complex problems. There are many excellent textbooks on the subject, and

here we introduce a few of the simpler methods and point out some of the pitfalls.

We begin by simplifying eqns (1.3a} and considering the single equation

d
.&if = f(x,1) (1.6a)

with a single state variable x; J/ denotes a function of x and time t, and the

parameters P and environment E are not shown explicitly. The process of

‘humerical integration can be shown as

X(t) = x(t + At), (1.6b)

Given the value of x at time t, and given eqn (1.6a) so that the rate of change x
can be calculated, how do we calculate the value of x at time ¢ + At, where Ar
denotes an increment in the time variable? A prescription of the type of (1.6b)
can be applied iteratively, starting from time t = 0 and proceeding to any time ¢.

161 Euler's method

This is the simplest method of all. It is called a first-order method because it takes
account of terms of order At, and the error is of order (A1Y*. The rate of change
of the state variable x at time ¢ is by definition given by

dx [x(z + Af) - x(t j}
——= lim .
dt a0

(1.7a}
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.""‘ At ]

Time ¢

Fig, L5 Namerical integration by Euler's method. The curve shows the true solutifm to
eqn (1.6a) passing through P and €2 PR is the tangent to the true solut:qn at point P.
R represents the solution predicted by Euler's method for time t + At, which is in error
by RO

Substituting eqn (1.6a) into {1.7a) gives

X+ A~ x(t :
SIx{eht] = lim P&fmx}—mf-(l]. (1.7b)
Arerd | t
For small values of As, it is approximately true that
oy X ALY - x(1) (170
f{)‘iff\h {j MMMMMMMMMMM Z& ? .
Rearranging this equation gives Euler's formula
xX{ -+ Af) = x{r) + At fIx(0), t]. (1.7d)

An illustration of the operation of Euler's method over a sipgle interval Af is
given in Fig. 1.5 Given the value of x at time ¢ = 0, this equation can bg applied
iteratively to give values for x af times ¢ = At, 2At, 3At, ... . (See Exercise 13)
A first-order method such as Euler’s method gives a second-o‘rder error of
arder (A7 This can be demonstrated by considering the Taylor series expansion
of x{r + At} This is
de 1 dix ;d%x
X(i “+ At} = \{f} + At dl “+ §I (At} EV“&“ 4 3“' {Ai) a’;j + 5
On comparing eqn ( 1.7e) with egn (1.7d) and noting that fx(t),t] = dx/dt, the
ercor ¢ m Buler's formula {egn (1.7d)) is given by

{1.7¢)

P dix X

s o APV = .
& == H,}{Az) a + higher-order terms
This ervor is known as the truncation error. For a straight line, the secogd and
higher derivatives are zero and Euler’s formula gives an exact result. Halving the

integration interval At reduces the error in eqn (1.7f) by a factor of 4. Howcv:r,

(170
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We now need 1o take twice as many steps to cover the same pe
that the resultant error per unit of time is reduced by 2.

Despite the availability of more sophisticated methods, Fule
great practical value. Because of its simplicity, it is easil
detail, and one can feel sure of just what is going on i

rod of time, so

s method is of
y checked out i complete
n a calculation,

Oscillations as an artefact of integration Using Euler’s method, we next show
how instability and oscillations can arise, Assume that eqn (1.6a) takes the form

d .
X ~kx With x = [ at ¢ = g, {(1.7g)
dt
kis a constant. Integration gives the exact analytical solution
X =gk (1.7h)

Next we generate an approximate numerical solution to eqn (1 .7g) using Euler’s
formula of eqn (1.7d) with k = 1and Af = 1, 1o give

! 0 1 2 3 4 5

x o2z e s e 1/32 (170
However, now assume that k = 3, Applying eqn {1.7d} gives
1 0 1 2 3 4 5 )
X =2 4 8 46 1 (173
Foreqn (1.7g) it can be shown that
‘ kAt < 1 gives asymptotic stability
< kAt <2 gives oscillations of decreasing amplitude (1.7k}

2 < k At gives oscillations of increasing amplitude,

With smaller values of At, the stability of the numerical solution is increased:;
the truncation error of eqn (1.7f) is also reduced. However, computing time
increases because more iterations are required and there is an increased possibil-
ity of rounding errors which result from the fact that the computer can only store

“values (0 a certain number of decimal digits. The Ar used is a compromise

between these conflicting criteria (Section 1.6.6, p. 30). Usually, to reduce the

162 Trapezoidal method

Euler's formula of eqn {1.7d) can be regarded as the first two terms of the Taylor
series of eqn (1.7¢). Occasionally, it is possible to calculate higher derivatives
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analyucally and use these directly in the Taylor series to obtain a better approx-
imation. Thus, given

dx

= fix,0), (1.8a)
by analytic differentiation the second derivative is

.,‘jx ey ‘(x t) Igb

dlz - 9 vy by ( G )

and then the first three terms of the Taylor series of eqn (1.7¢) are calculable,
giving

x(t + At} = x{t) + At f(x, 1) + $(A1)2g(x, 1). {1.8¢)

This sccond-order equation has a third-order error which is the fourth term on

the right-hand side of eqn (1.7¢).

More usually, it is not practical to calculate analytically using algebra the
higher derivatives of the Taylor series expansion of eqn (1.7¢). Essentially, the
higher-order numerical integration methods operate by evaluating the first de-
rivatives using eqn (1.8a) at different points within the integration interval, and
the higher derivatives are obtained from the way in which the first derivatives

change. We consider here the simplest of the second-order methods, which is
known as the trapezoidal method.

Consider the second derivatives as defined by differentiating eqn (1.7a) to give.

{with % = dx/dn)

dix i [ 20+ 80 - 30
(h:" At At :

dx X1+ A) — x()
drr ~ At
As flx, 1) = dx/dt, eqn (1 8¢} can be written

d’x  fx(t+ Ayt + Ar) = fix,0)

For small At, therefore,

{1.8¢)

a At (14

Euler's method of eqn (1.7d) provides a first-order estimate x, of x(t + At), giving

Xy o= x{t -+ Aty = x(t) + At f(x, 1), {1.8g)
Next, substitute x, for x{t + At} in eqn (1.8f) to give

d*x  flx,t+ AL — f(x,1)

a A

(1.8h)

Now take the first three terms of the Taylor series of eqn (1.7e) and use eqns

(1.8d)

P T T

R

-where
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{1.8a} and (1.8h) to substitute for the first and second derivatives, giving

At

where the higher-order terms are omitted. On simplifying this equation, the
trapezoidal method is obtained:

x(t + Af) = x(1) + FA[ flx,, 1 + A + f(x, 0] {1.8§)

This method is a simple example of a ‘predictor—corrector’ method: Euler's

x(t + At = x() + At f(x,1) + %(Aa)z [f beyot + A0 — [l ﬂ, (1.80)

. method is used to predict x, = x(t + At) (eqn (1.8g)), and then eqn (1.8j) is used

to improve or correct this first estimate of x{t + At). The trapezoidal method is
second order, so that the error ¢ is third order. It can be shown that

1 dx
&= m«a{At} i + higher-order terms. (1.8k)

This truncation error is smaller than that given by Euler’s method (eqn (1.70)).

- {See Exercise 1.4)

1.6.3 Higher-order methods

- Several higher-order methods are available, such as Simpson’s rule, Runge-

- Kutta methods, and Milne’s method. These involve calculating the first deriva-
- tive within or across the interval. Just as in the trapezoidal method, where in
_-eqn (1.8d) two values of the first derivative allow the second derivative to be
estimated, three values of the first derivative allow the third derivative to be

~ estimated, and four values of the first derivative allow the fourth derivative to

be estimated. With the latter, the error (see eqn (1.7e)) is then fifth order.
The fourth-order Runge~Kutta method is outlined as an example of a higher-

_order method. Given the function

dx

adl_ = f(xx 5)

-and given x at time ¢, at time ¢ + At this algorithm takes the form

X+ Ax = x + HAx; + 28x, + 28x; + Axy), (1.81)
Ax, = At f(x,1)

Axy = AL f{x + $Ax,,t + A1)

Axy = AL f{x + $Ax,, 0 + LAY

Axy = At f(x + Axs,t + Al),

The truncation error ¢ is of order (Ar)’.
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.64 Variable-step methods

Variable-step methods are popular because they enable a numerical integration
to be performed efficiently in terms of the length of the time step At and computer
time. The idea is that the time step is maximized subject to the truncation error
being less than a certain value. Calculation of the error requires an extra function
evaluation. The technique is outlined with respect to Euler’s formula.

Euler’s method gives (eqn (1 Ty

Ax = At f(x,1). (1.8m)

Therefore, from eqn (1,77} for the truncation error ¢ and eqn (1.8f) for the second
derivative,

e = HAGflx + Ax,t + A — f(x, 0] {1.8n)
The relative error is thus given by

gm}{ﬂxw&xt+A0~ﬂ&Q]

S : 1.80
Ax  2p fix,n) (1.80)
The integration time step At is then increased until the relative error is just less

than a chosen value, which may depend on the word length of the computer
being used.

L6.5 Stiff equations

The constant k in eqn (1.7g) is often described as a rate constant. The higher
the value of k, the more rapid is the rate of change of x. k has dimensions of
{tine) ™ thus 1/k has dimensions of time, and is sometimes referred to as the
relaxation time of the equation. In eqn ( 1.7g), x falls to 1/e of its original value
in & time interval of 1/k.

Suff equations occur when the rate constants in a system of differential equa-
tions differ markedly. The equations then have solutions whose relaxation times
are very different. In many areas of biology, including the plant sciences, there
may be fast biochemical processes which take milliseconds or less for their
completion, at the macromolecular and cellular levels processes may take sec-
onds or even minutes, and at the organ level (for instance, root ; shoot ratios) a
response may take several days. An integration interval of Ar that suits the slow
processes in a model may cause unstable oscillations of increasing amplitude
with the fast processes, as in (1.7j). A short time interval that gives stable
integration with the fast processes may be very expensive to run over the total
time period of interest. It may also be difficult to restrict the range of rate

constants in a model without distorting or discarding important components of

physiology or biochemistry.
Consider the process (or chemical reaction)
5., (1.93)

&
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where z is a state variable and k is a rate constant. This leads to dz/dr = ~kz,
which, with z = z, at time t = 0, gives
7= zoe™M, {1.9b)
Now replace (1.9a) by a two-state variable scheme
k ki
yEx o, (1.9¢)
ky

with state variables x and y, and rate constants ky, ky, and k,. The differential
equations of this system are

o= (ks + ky)x + kyy
% = —kyy+ kyx.
Consider the case where k, = k, = 10, so that x and yare in comparatively rapid
equilibrium with each other, and ky = 1, so that x is converted relatively slowly
into other products. Some solutions, starting from several different initial values,
are shown in Fig. 1.6. The solution of interest is usually the slowly developing
solution, as determined by k, in Fig. 1.6, and in this solution x and y are in
quasi-equilibrium with each other. The short spurs in Fig. 1.6 illustrate the rapid
process that occurs when the system point (x, y) is started at values of x and y
which are not in quasi-equilibrium: there is rapid movement due to ky and k, to
re-establish the quasi-equilibrium.

As an aside, it is interesting to consider the consequences of reversing the
direction of time in eqns (1.9d) and Fig. 1.6; that is, replace 1 by —1 in eqns (1.9d),

(1.9dj

0.5
04r

03r

State variable x

0.2¢

0.1

-

0 1 2 3 4 5

Time ¢

_ Fig. L6. Stiff equations. Results were obtained by integration of eqns (1.9d) with k, = k, =

10,k, = 1, and At = 0.0005, and using the fourth-order Runge-Kutta method. The ‘stow’
solution is calculated from initial values of x = ¥ = 0.5; the ‘fast’ solutions shown by the

short spurs were obtained by displacing the system point from the slow solution but
maintaining x + y at the same value.
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so that the system point moves {rom right to left in Fig. 1.6. It will be clear that
the path traced out by the system point is so sensitive to the initfia} valu‘es‘(now
att = 5in Fig 1.6) that effectively the system is indeterminate. This is reminiscent
of the behaviour of the so-called chaotic systems (Cvitanovic 1984). As has been
pomted out by Popper (1982) and others, even a deterministic system of equa-
tons can fail to have a determined outcome; thus nineteenth-century smentxﬁc
aftitudes rooted in classical (pre-quantum-mechanical) physics were in error in
assurming that the universe 1s determined.

There are several techniques which can be applied to stiff equation problems
i order to obtain solutions without using the brute-force method of a small
integration interval and a lot of computing. In a given situation, one of these
may well be applicable.

Combining rapidly exchanging pools  Rapidly exchanging pools can sometimes
be brought together. In eqns {1.9d), define z by

=X 4y {1.9¢)
and add the two eqns (1.9d) together to give
dz
e —kyx. (1.91)

I we assume that k,, k, » k,, then, since x and y are now in quasi-equilibrium
under &, and k,, from either of eqns (1.9d)

kyy = k;x. (1.9g)
Therefore, eliminating y between eqns (1.9¢) and (1.9g),
k, ‘
A T (1.9h)
: ky + k, :
Substituting for x with eqn {1.9h) in egn (1.9f)
dz k, o !
t W e g IR me———— k . (19])
dr kz where (’Q " k2> 3

This is equivalent to (1.9a), and a simplification of the problem has thus been -

achioved.

Reducing the fast rate constants  The particular values ascribeffl to the fast rate
constants, which cause difficulties in the integration, may have little effect on the

solutions. In Fig. 1.6 the slow solutions are much the same for k, and k, values
of 10, 100, or 1000. Of course varying the fast rate constants has a great effect.
on the rapid transients in the solutions. Some of the fluxes in the system are.

reduced in magnitude by reducing the values of rate constants. This may be
important to the investigator. An alternative method that leaves the fluxes
unaltered is described below.

S g ———
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Fy Py
e .
S A

Fy Fy

Fig. L7. A single compartment with state vari

] able @ of a model is shown; the F, are fluxes
mnto and out of the compartment.

Increasing pool sizes Consider the ‘biochemical’ system shown in Fig. 1.7. Q is
astate variable denoting a quantity of substance; F, and F, are fluxes of substance

into the pool, and F, and F, are fluxes out of the pool. The differential equation
for Qis

dg - ;
G -RtR-F-F, (1.9)

Assume that substance @ is distributed over a volume ¥, so that the concentration
Cof @ is given by

C=Q/v. (1.9k)

For some applications, the steady state solutions of eqn (1 9j) may be of interest,
ie. when dQ/dr = 0 and Fy + Fy = F, + F,. The fluxes in general depend on the
concentration C, so that the quantity Q and therefore C finds a value where the
fluxes are in equilibrium. Sometimes, quite small excursions from the steady state
give rise to large fluxes (in relation to the pool size which is the steady state value
of 9), so that dQ/d: from eqn (1.9j) is large and causes the integration to break
down. This type of behaviour usually occurs with small highly labile pools, such
as adenosine triphosphate (ATP) or NADPH,. A way round this problem is to

inflate the pool size by a multiplier m. Assume that the volume associated with
substance Q is

Vi=mVv (1.91)

and, most important, that the initial value ascribed to the pool at time 1 = 0 is

changed from Q(t = 0) to

Q'(t = 0) = mQ(t = 0). {1.9m)

~ Note that the concentration given by eqn (1.9k) is unaltered when calculated
“using C = Q'/V’. It is assumed that the reactive volumes are unchanged—these

are the volumes within which the reactions take place that give rise to the fluxes

F,etc.—so that the fluxes are unaltered, since these depend on the concentrations

and the reactive volumes. Thus dQ/dt calculated from eqn (1.9j) remains the same,

but now this rate of change is applied to updating Q' which is m times larger.

Integration problems as in (1.7j) are less likely to arise when a rate of change of
10is applied to a pool of 30 than when it is apphed to a pool of 3, as for m = 10

With Q(t = 0) = 3.



2 Plant and crop modelling

The rate at which the steady state is approached is reduced by factor m, and
g0 the transient behaviour is chan ged, but in the steady state the correct solutions
are still obtained.

Elimination of labile pools In eqgns (1.9¢) and (1.91) above we described how
rapidly exchanging pools could be combined to give a simpler and more stable
representation of the system. Another technique which could be applied to small
labile pools is to assume they are vanishingly small and eliminate them from the
system. Thus, referring to Fig 1.7 and eqn (1.99), it is assumed that

Fy+ Fy=F, +F, (1.9n)

The residual problem is that some of the fluxes may depend on the concentration
€. How s this to be dealt with as Q and C are now undetermined? There are two
ases to be considered.

- All fluxes in the system are assumed independent of C: one of the fluxes in
eqn (1.9n) (F, say) can adjust freely so that eqn (1.9n) is satisfied, and the other
fluxes in the equation are determined elsewhere. This same type of balance
can be obtained if it is assumed that two or more of the fluxes in eqn (1.9n)
can adjust freely but in a fixed ratio: for example, F, + F, = (1 + AF,, Ais
assigned a value, and F, adjusts freely.

- Some priority scheme is assumed. For example, it is assumed that F, is zero
and F, adjusts freely up to a certain limit, after which F, remains constant
and Fy takes up the slack. In plant models it may (for instance) be assumed
that first the apex, then the young growing leaves, and lastly the roots take
up the consumption of carbohydrate, and this assumption may enable the
carbohydrate pool to be eliminated from a plant model.

[ v

[

Special algorithms Recently a number of algorithms have been developed for
the stiff differential equation problem. Essentially, they enable step lengths to be
used that are considerably greater than the shortest relaxation times in the
system. However, there is a computational price to pay in that a state transition

matrix must be constructed and inverted. The most important point to be

realized is that these algorithms are of no benefit if there are high-frequency

components in the driving functions. Thus, if we drive a plant or crop model with -

rapidly changing light flux densities which follow the fluctuating light levels
through the day, stiff algorithms do not enable us to take daily time steps and

hence save computing time. It is then necessary to use the brute-force method of

a sulliciently small time step and adequate computing power.

L.6.6 Choice of integration method

This is & matter of obtaining sufficient accuracy without using excessive computer
tume. Five fixed-step methods are compared in Table 1.2. The equation integrated
Wi

T v

{truncation + rounding) and execution times (relative units) for five different

Table 1.2. Comparison of integration errors

fixed-step methods for eqn (1.90)
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Integration method

Adams Trapezoidal Simpson’s Runge-Kutta

Euler

(%)

Time Error (%) Time Error {

Error (%)

Time Error (%) Time Error (%) Time

At

~0.03

—~11

- 14

~32

0.1

o
i

—-0.3

—39

0.01

38
570

43
410

19

180

17
160

0.001
0.0001

At is the integration interval; a word length of 32 bits was employed. The error was computed using eqn {1.9p).
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Fig. 1.8, Effect of the integration step length At on truncation errors and rounding errors
in mumerical integration by computer,

dxmx with x = latt =0,

dt
At time ¢ = 100, the numerical result x(t = 100, numerical) is compared with th.e
analytical result x(t = 100, analytical) = exp(100), and a percentage error is
calculated as follows:

1000 x(r = 100, numerical) — x{t = 100, analytical)]
x{t = 100, analytical)

(1.90)

error (%) = (1.9p)
it can be seen from Table 1.2 that (for this particular problem anfi for the
computer used} the best error @ execution time ratio is given by the h'xgh-order
Runge-Kutta method with the largest time step of At = 0.1. Rougdmg errors
very quickly become important as At is decreased. The compromise between
truncation errors and rounding errors is shown schematically in Fig. 1.8.
While the fourth-order Runge-Kutta method is well suited to many problgmg,
it may sometimes give bogus results and there are some problems where it is
inapplicable; these arise in crop modelling in particular. Euler’s n?cthod ‘has an
advantage of being so transparent that it is easily checked out in de?axl. The
higher-order methods can, cach in its own way, exhibit unstable behaviour and

generate spurious resuits. We advocate that the results of a numerical integration

should be viewed sceptically, at least until they have been gem::rated using a range
of step lengths and if possible two or three different intcgfatlon methods. :

The plant and crop modeller has a special problem which can cgmpcl 'the use
of Euler’s method in preference to any higher-order methods, ?vhxch all xn}'olve
evaluating the first derivatives more than once per time step as in eqns (1.8j) ‘and
{1.81}. This arises because the equations of the model (eqns (1.3a)) are (?ften driven
by environmental variables denoted by E. These may be quantities such as

A o =
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temperature, radiation, or rainfall, which are not available as continuous vari-
ables but only as averages over some time interval, For instance, the radiation
receipt may be 10 MJ m™* on day 3 of a simulation and 5 MJ m~2 on day 4;
similarly the mean temperatures on successive days may be 22°C and 17°C.
These discontinuities cause discontinuities in the first derivatives in eqns (1.3a)
on moving from one time interval to the next. It may not be obvious how the
first derivatives should be calculated within or at the two ends of a time interval.
The method that many plant and crop modellers use is to measure all the
environmental variables with respect to a common time interval (or refer them
to a common time interval), and then to use this time interval for numerical
integration using Euler’s method. Many modelling languages (A CSL, CSMP; see
Section 1.7.3, p. 34) allow a choice of several integration methods.

L7 Evaluation of models

The term evaluation is used here in the wider scientific sense-—as part of the
general methodology of science—and, potentially at least, evaluation may be
concerned with any aspect of a model. It must be stressed that the evaluation of
a model is not a wholly objective process. It may be connected with properties
of the model such as its utility, simplicity, elegance, economy, plausibility, good-
ness of fit, and appropriateness to objectives. Researchers will always attach
different weights to these items, and so it is unsurprising that models in the same
problem area are differently ranked by different people. Some modellers speak
of model verification and validation, although this suggests a lack of under-
standing of the ‘working hypothesis’ status of a scientific theory. Popper’s (1958)
thesis, now widely accepted, is that theories can only be falsified, and so the term
‘validation’ must be presumed to mean a failed attempt at falsification. Most
crop and plant models have a short life, and they are soon discarded in favour
of other, usually more general, models. It is even mistaken to talk about ‘valida-
tion’ for an applied model with a clear practical objective, such as the efficient
application of nitrogen fertilizer to grassland. All that needs to be demonstrated
is that the proposed model produces better results than the current model
{current practice) in a defined set of circumstances; this is sometimes referred to
as the ‘champion -challenger’ a pproach. From the farmer’s viewpoint, it may not
matter too much that the model may be based on (what some would regard as)
mistaken assumptions.

Perhaps it hardly needs to be said, but any model should be thoroughly tested
for methodological correctness: the mathematical equations must correctly re-

_ present the stated biological assumptions; both assumptions and equations must
- be self-consistent, with the equations being dimensionally homogeneous; any
- algebra or analysis must be free from error; any computer code must be correct.
- The modelling literature is not free from such failings. Indeed, in large and
- complex models, it can be so difficult not to make errors that it is better to assume
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that errors will be made and to adopt a self-checking method of working that
traps the errors as or shortly after they are made; it may be almost impossible
to find them later. In contrast with model evaluation, model testing is an
objective process which has the result ‘true’ or ‘false’,

Both evaluation and testing should be applied continuously throughout a
modelling project right from the beginning. Final evaluation of a model depends
upon being sure of the model’s methodological correctness.

Most modelling Projects can be considered in five parts.
. The objectives of the research (p. 14): it is common for objectives to change
somewhat as the project proceeds, and this is legitimate because science is
mtrinsically unpredictable.
Definition of the structure of the model: this includes the type of description
(levels of aggregation), often a diagram such as Fig. 1.3, and the biological
assumptions.
3 Representing 2 mathematically, and performing any subsequent analysis,
4. Solving the mathematical problem resulting from 3, usually by means of a

Lomputer program,

5. Examining and interpreting the model predictions, especially in relation to L
altempting to simulate experimental data if suitable data are available,

Evaluation and testing are carried out at each step. The steps do overlap and

interact, and it is usual to move backwards and forwards around these five items.

et

V10 Structure of the model

A mathematical model represents a set of biological assumptions which are
slways a simplification of reality. Inevitably there are colleagues and critics who
are unwilling to accept the level of simplification chosen: the model is either ‘too
complex’ or is ‘over-simplified’, Although mathematics is the servant of the
sciences (for current purposes), there is little double that the assumptions of
maodel builders are often constrained by their ability to express those assumptions
mathematically, A good appreciation of the biological state of the art is essential.
Much of the skill and art of modelling then lies in deciding which details can be
ignored, what approximations are reasonable and appropriate, and in striking
that fruitful compromise which leads to progress. Procrustean assumptions may
well be needed, and colleagues who see their research area brusquely set aside
may be much offended. There are no objective rules for going about this process.
onjecture i s but it should be informed conjecture; however, it is inevitably
based on the experience, skills, and Judgement of the modeller.

Sometimes one sees modellers attempting biological modelling, but keeping
the biology of the problem at arm’s length. It rarely works: the collaborating
biologist may fail to grasp what is being attempted in the mathematical represen-
tion, and the modeller may be unable to assess and rank the biological possibil-
ities. The result is likely to be work of little value, and frustration for the
concerned parties,
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172 Mathematical equations

The accurate translation of biological ideas into mathematics requires mathe-
matical fluency, a wide familiarity with mathematical possibilities, and a sound
understanding of the biological ideas being translated. Clearly this requires either
highly numerate biologists or close collaboration between biologists and people
with the requisite mathematical skills. Some simple guidelines, which reduce the
possibility of error and help in detecting eérrors, can be followed to accomplish

The first step is to define the symbols. Iy is worth giving this carefy] thought,
since equations are much easier to read, understand, and check if similar symbols
are used for similar Quantities, and if the simijjar symbols have the same unis.
For example, rate constants with dimensions tjme ! may be denoted by ki, k,,
-+, - In a plant model the components of dry mass may be shown by W, W, and
W, for the leaf, stem, and root. Where there is a consensus in the literature about
the use of certain symbols for certain quantities, the traditional symbols should
be used unless there are good reasons for doing otherwise. The use of computer
language notation such as FORTRAN in mathematical analysis (or in scientific
papersj is, in our view, mistaken. It is less efficient, less reada ble, and less easily
checked than the more conventional mathematical notation that has evolved

case, and subscripts and superscripts as needed. Computer notation, while still
quite primitive, is rapidly evolving. Work presented in such notation may quickly
become inaccessible. Indeed, many journals do not allow computer notation to
be used within the body of a scientific communication,

The second step is to check dimensions, In an equation, each term must have
the same dimensions as all the others. For this purpose, a symbol table shouid
be constructed which has a verbal definition of each symbol used and also its
dimensions. Sometimes it is also helpful to work out the dimensions of groups
of symbols that often occur together. A single system of units (preferably ST)
should be used throughout the model, even when these are not the customary
units. This avoids troublesome conversion factors for quantities like grams to
kilograms, or cubic metres to litres, which can very easily give rise to errors,

A third step is to check for mathematical consistency and completeness. There
must be enough equations to define the problem, but the problem must not be
over-defined. For instance, for a dynamic mode} with three state variables, three
difference equations or differential equations are required. For a simple static
problem with five variables, five equations are needed,

A fourth useful check is for biological consistency and completeness at the
whole-system level. In many plant models (e.g. Chapter 16, Section 16.5, p. 464),
carbon (C) and nitrogen (N) accounting can be carried out. We can write

d .
a(total CorNin system) = gystem inputs — system outputs. (1.10a)
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Internal transfers T, 1> say from pool i to pool j, occur twice in the mathematical
equations of the model: positively in the differential equation for pool j, and
negatively in that for pool i Summing the equations should give cancellation of
all internal transfers. For instance, however complicated a plant model is, some
of sts equations should sum to

gross photosynthetic rate = growth rate + respiration rate
+ senescence rate, {1.10b)

where these quantities are expressed in the same units,

173 Solving the equations of the model

This process is usually carried out by computer. If possible, one should choose
1o use a modern portable language that lends itself to well-structured self-
documenting programs. Variable names should be chosen with care, and should
correspond to the mathematical/biological variables. The general principle to be
followed is that mistakes will be made, so that programs are written so that the
mistakes are easily located and corrected.

There are now some good non-procedural modelling languages available, such
as Continuous Systems Maodelling Program {CSMP) (Speckhart and Green
1976) and Advanced Computer Simulation Language (ACSL) (Mitchell and
Gauthier Associates 1987); ACSL has been used to solve most of the dynamic
models described in this book. In a non-procedural program, the program
statements can be written in any order; during the compilation process, the
staternents are put in an executable order. To program in a non-procedural
language 13 a liberating experience that must be experienced to be appreciated.
Using such languages is easy and quick (compared with using FORTRAN), and
the program can be structured according to the biology of the problem, which
moreases program readability enormously. While these languages are not suit-
able for all problems, they are ideal for dynamic deterministic models of the type
of egns (1.3a),

Where possible, self-consistency checks of the type in eqns (1.10a) and (1.10b)
should be written into the program; these may pin-point programming errors or
mathematical errors in model formulation. In the early runs of a program, it is
often worthwhile to print out every left-hand-side quantity in the program, and
sometimes errors can be located by performing a detailed check on a hand
valculator working direct from the mathematical equations (not from the pro-
grammed version of these equations).

Checks should also be applied against the possibility of integration errors due ,
to-an inappropriate integration method or to too large an integration interval. |
The results of running the program should be reasonably stable against variation

in integration method and interval. Some machines have rather a short word-
length, and rounding errors can be soon encountered if very short integration
intervals are used (p. 30).

 the parameters. One of the state variables of
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L.7.4 Comparison of model with experiment - model fitting

After the model has been carefully tested, and is free from mathematical, com-
putational, and numerical errors, its predictions then truly reflect the assump-
tions on which it is based. It is essential to evaluate a model first by examining
Its qualitative behaviour. If this is satisfactory, then one can proceed to a direct
comparison of the model’s predictions with observational data, if suitable data
are available, which is often not the case. When comparing a model’s predictions

ss of fit is required, and frequently

model.

Fitting a model generally means adjusting some of the parameter values
(shown by P in eqns (1.3a)) and perhaps some of the initial values also (Xt = 0),
i=12..,¢9 so that the predictions of the model more closely resemble the
observational data; this adjustment process does not alter the structure or basic
equations of the model. To some modellers this approa

be an important part of model evaluation, and the simple procedure outlined
below has been found to be of practical value.
Consider the case where a single attribute y of

' / : the system (dry mass say) is
measured at m time points (¢ is the time variable),

to give a set of m number pairs:

(yhtl)»{y2’t2)x"*7(ym»tm)‘ (}Ila}

We further assume, for simplicity,
are taken at the ith time point,

The state variables of the model are X, k = |, 2, ..., q (see egns (1.3a)), and

mnning the model on the computer predicts a value for X x @t any time point ¢,
We write this as

that each y, is a mean over any replicates that

Xt P E) (L11b)

to emphasize the fact that the predicted values depend on the values assigned to
the parameters P. In (1.11b) the parameters P include the initial values X Wt = 0),

and from now on when we refer to parameters, we include initial values in with

: (1.11b) may correspond directly to
the expermmentally measured quantity y, or it may be necessary to derive an

auxiliary variable that does correspond to y. (State variables may be root, stem
and leaf dry masses; from these the total dry matter is calculated {this is an
auxiliary variable), and it is the predicted value of total dry matter that can be
compared with experiment.) Thus the predicted variable that corresponds to

observation y, is denoted by Y, and the model gives a set of predicted values,
~one at each of the m time points t;:
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Yt (Y1), (Yt {1.11¢)

The sets (1. 11a) and (1.1 I¢) can now be compared; a perfect fit would give yi=Y
atevery time point. Since the model is deterministic, the Y, are obtained without
any probability distribution. The environment in which the observational data
were taken is the same as the environment E used within the model; if two
environmental treatments were used, then there would be two sets of observa-
tional data and two sets of predicted data,

Calewlation of a residual A residual r, can be calculated according to

r=y-Y or nnmeg, (L11d)
4
or by using some other measure. In the plant sciences the second of eqns (11.1d)
18 usually appropriate, since this weights data points with the same proportional
error equally. Thus a 10 per cent error in a predicted dry mass of 0.001 kg is of
the same importance as a 10 per cent error in a predicted dry mass of 1kg.
Equations (1.11d) can be summed to give a residual sum of squares

R=3% gr2 (1.11e)
&t

using a weighting factor g if required. The residual sum of squares R is a measure

of the lack of fit of the model and it depends on the parameter values, so that we
CAn write

R = R(P). (1.11f)

Consider the simplified case where the model has just a single parameter P.
Best fit is obtained by adjusting P so that R is a minimum, giving

dR d*R

Examples of a sensitive parameter {curve 4) and an insensitive parameter (curve
B} are illustrated in F ig. 1.9, In curve A the value of d’R/dP? is large, and this
defines the value of P for best fit more narrowly. It is desirable that the residual
R should be reasonably sensitive 1o all the parameters of the model, and if there
ire some parameters to which R is completely insensitive, this can indicate areas
in which the model might be simplified. It must be remembered that such a result
depends totally on the nature of the observational data against which the model
13 mensured,

I truncation and rounding errors (which are always present but are usually
insignificant) are ignored, the predicted values Y, = L2, ..., mare computed
without error; however, the experimental data Yui=1,2, ... mare subject to
etror, and this puts a lower limit on the value of R that can be achieved by
parameter adjustment. The residual sum of squares R can be divided into two
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Residual sum of squares R

Parameter P

Fig. L9. Sensitive and insensitive model parameters: curve A, thc:: residual sum ?f squares
R varies rapidly as the parameter P changes, and the value of P is therefore critical to fhc
fit obtained with the model; curve B, the value of P has little effect on R, so that fitting
the model is not able to define P closely and the value assigned to P is not critical to the
model.

components:
R =R, + R, (1.11h)

where R, is the part of the residual due to the lack of fit of the model and R, s
due to error in the experimental data. R, has an expected value of

R, = (m ~ njg?, {1.111)

where m is the number of data points, n is the number of parameters in P which
are adjusted, and ¢ is the error variance. The parameters P only affect R;, but
if R, is very large (adding a large constant term to the curves in Fig, 1.9) R may
be rendered much less sensitive to the P values, If the experiment resulting in the
data y,, y,, ..., y, can be replicated, then the error term R,, may be known.
Otherwise, an upper limit an R, and also on o2 is given by the minimum value
of R obtained by adjusting the parameters P

Suppose that instead of the single set of data as in (1.1 la), we have two sets,
perhaps plant dry mass and leaf area, giving

[/V‘,im l,...,mw,

and (1115
Ay i = I,.,.,m&.

Using eqns (1.11d) and (1.11e), we can calculate two residual sums of squares,
that with respect to dry mass Ry and that with respect to leaf area R 4 It is
Necessary to combine these in order to carry out parameter adjustment; this can
be achieved using

R=Rw Ry (L11k)
Ow O
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where the of and the a} are the respective error variances. The parameters can
now be adjusted with respect to the combined residual R.If the error variances
are not known, then clearly eqn (1.1 1k) cannot be constructed, although for fitting
it is still necessary to combine the residuals in some way. If the second of eqns
{1.11d} iz used to calculate the residuals r;, then Ry, and R, are independent of
the dimensions of W or 4 and of any scaling factors. If it is further assumed that
dry mass W and area 4 have the same coefficient of variation, which is often a
reasonable assumption, then the combined residual can be written

R = Ry + R,

and the parameters can be adjusted so that R in eqn (1.111) is minimized,

The goodness of fit can be estimated by comparing the residual sum of squares
due to lack of fit of the model (R, in eqn (1.11h)) with the error residual sum of
squares R, using the F test (see Exercise 1.5). An estimate of the error term is
only available if a replicated experiment has been performed; if this is not the
case, only a qualitative and subjective assessment of the fit of the model to the
data may be possible.

(1.11})

Confidence intervals for fitred parameters The dependence of the residual sum
of squares R on the n parameters F,j=12,...,ncanbe expressed by

R =R(P,P,, ... P,) (1.11m)

Computer methods are generally used to search for the minimum of R with
respect to the P using an optimization procedure. The function R, whose min-

imum one is trying to find, is known as the objective function. The gradient vector

is the set of first partial derivatives of R with respect to the parameters Poi=1,

2, ...n, namely JdR/EP,, dR/AP,, ..., OR/OP,. At a minimum,
dR AR OR
S e et (), Liln)
ap, ~ 3P, oP, (L.1n)

The matrix of second partial derivatives of the objective function is called the
Hessian matrix, and its elements take the form

*R
= 3pan,

At the minimum all the eigenvalues of the Hessian matrix must be positive,
Essentially this means that the second derivatives with respect to the parameters -

are positive, and R increases in whatever direction one moves from the point
defined by OR/GP; =0, j= 1,2, ..., n. The matrix in (1.110) is obtained by
numerical differentiation, for which computer procedures are available.

Let the matrix G with elements G,;- be the inverse of the Hessian matrix H with

elements H, .. This can be represented symbolically by
G H™L

although it is usual to use a computer procedure to obtain the inverse matrix.

(1.110) -

{1.1!p),‘

I

il e s a e by

.

e
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The number of degrees of freedom is denoted by v. If there are m data points
and n adjustable parameters, v is given by

V=m e, (1L.1lg)

although if there are two data sets as in (L11j), vis given by
V=M + My —n

An unbiased estimate of the variance V of parameter Pis

R
V(B) = =G, (1.117)

and an unbiased estimate of the covariance C of parameters P, and P.is

R
C(B,B) =G, (1.11s)

I P* is the true value of the parameter P;, then the 100(1 — f) per cent confidence
interval of P* is

P £ [V(R)]",,, (L111)

where ¢, , is the 1008 percentage point of the ¢ distribution with v degrees of
freedom (France and Thornley 1984, pp. 282-283), (See Exercise 1.5.)

L7.5 Sensitivity analysis

Sensitivity with respect 1o observational data Consider a model with a single
adjustable parameter P which has been fitted to a data set by minimizing a
residual sum of squares R with v degrees of freedom (eqns {1.11d), (1.11¢), and
(1.11q)). The variance V(P) of P is given by {eqns (1.110), (1.11p), and (1.11r))

S
v 3*R/oPT

To compare the effects of different parameters on model performance, a dimen-
sionless quantity is required that is independent of the absolute value of a

V(P) (1.12a)

- parameter; the variance V(P) of P has the same units as P* and is therefore not

acceptable. The coefficient of variation CV({P} of V is such a quantity, and is

- defined by

Cv(p) P , {1.12b)

InFig. 1.9, curve A has a high value of curvature 3*R/3P?, giving reduced values

of ¥(P)and CV(P); a low value of CV(P) indicates that the model is sensitive to

~ the parameter P. Similarly, curve B in Fig. 1.9, which denotes an insensitive

parameter, has a low value of curvature and a higher value of CV(P).
Now consider a model with several parameters P, all of which affect the

- performance of the model. Analogous to eqn (1.12b), the coefficient ofyvartation
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of Fj can be caleulated by

>y 12
CVIP) = tgﬁflew, {1.12¢)

P
where the variance VIE} of P is obtained from eqn (1.11r). The coefficients of
variation can be used to rank the parameters—a low value of CV(P) denotes
that parameter F; has a considerable effect on the fit of the model to that
particular data set, and vice versa. It must be emphasized that the results of a
sensitivity analysis depend entirely on the data set being used, and different data
sels can give very different results. There is, therefore, nothing ‘objective’ or
absolute about the method, which may say more about the data set than about
the model. Nevertheless, the technigue can be useful, especially when preparing
a model for applications purposes which may require defining the precision
required of the parameters of the model and specifying its range of validity (by
this we mean a certain specified lovel of predictive accuracy). Experience with
plant and crop models suggests that values of CV(P) in the range 0.05-0.2 are
reasonable.

Ranking the parameters by means of a sensitivity analysis may indicate ways
in which a model might be simplified. A high value of CV(P) means that the
parameters P has little effect on the predictions of the model. It may be possible
to remove such a parameter from the model. However, there may be good
ressons, hiological or physiological, for retaining the parameter, even though it
has little effect on the model's predictive performance.

Sensitivity with respect to model predictions  So far we have considered sen-
sitivity analysis in terms of the effects of a parameter F; on the goodness of fit as
measured by a residual. It may be more pertinent to evaluate the sensitivity of
some guantity Q to the parameter P;; we denote this by S(Q, P). For example,
we may be concerned with the vield of a ¢rop at maturity or at a particular time
during the growing season. Suppose that a model has been evaluated and is
Judged satisfactory. Some of the parameters of the model will be physiological/
genetic and some will be environmental. Some of the environmental parameters,

such as the timing and quantity of fertilizer applications or irrigation, may be -

within the control of management. Objectives for programmes of plant breeding,
genetic manipulation, or management priorities can be formulated more effec-

tively if it is possible to rank the parameters P, according to their effects on {say}
yield Y. A dimensionless measure of the sensitivity of yield Y to a parameter Pjis

_ovn v R

S(Y, F) = (1.12d)

BYY op

OF, denotes a small finite change in the parameter P, and Y is the change that ,’
this produces in Y. For computing the sensitivity S(Y, P)of Yand P, a 5 per cent
parameler increment is usually sufficient, so that OP/P,=005.1f a 5 per cent .
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change in P, gives a 5 per cent change in Y, then S(Y,P}) = 1. Parameters with
S(Y,P) > 1 have larger effects on yield, and vice versa.

An example of the use of a model to rank parameters is given by Thornley,
Hurd, and Pooley (1981, Table 1); they rank the parameters of a leaf-growth
model in terms of their marginal contribution to the carbon budget of the plant,

Finally, it should be noted that the sensitivity of a model, as defined by eqn
(1.12d), is very similar to the economist’s concepts of demand elasticities and cost
elasticities. If the price of some good is p and x is the number of goods sold per
unit time, then a demand elasticity E can be defined by

;o Oxx _dlinx) (112¢)
op/p  &(In p)
The prefix & denotes a small increment in the variable. Comparison of eqns
(1.12d) and (1.12e) shows that they are identical in structure.

L8 The presentation of models

The continued health and progress of science depends upon the existence of open
channels of communication. Publication is the means by which scientists put
their efforts before the scientific community, which is then free to ignore, refute,
modify, or applaud the contribution. However, even the brief history of science
reveals many examples of attempts by the ‘scientific establishment’ to suppress
innovative contributions; examples of such censorship include theories of con-
tinental drift and the origin of the solar system. Fortunately the pluralistic and
fragmented nature of science has thwarted such approaches, although the in-
efficiencies caused by ‘establishment’ attitudes should not be underestimated
{Lock 1986).

The modeller of plant and crop growth, and indeed of wider agricultural
problems, will doubtless have run up against some of the problems that arise in
attempting to publish modelling papers. Our reason for writing this section is to
help modellers fight the battles with which they may be faced. Just as the weak
administrator likes to construct and rely upon an extensive set of rules, rather
than have some guiding principles and then treat each problem on its merits, so
some journals like to decide a quite detailed ‘policy’, which can then be used as
a blunt instrument to decide what is and what is not acceptable to the journal,
Of course, it will always be difficult for any journal to strike the right balance
between material that is not worth publishing and encouraging the growing
points of the subject, which will often seem heretical or of little value to many
and will inevitably be difficult to assess {Lock 1986).

Some biological journals will not accept papers that are ‘purely theoretical’
and some will not accept papers that are ‘purely observational’, even though
these papers may be highly relevant to the field of scholarship of the journal.
However, to exclude purely theoretical papers (papers without direct reference
to observational data) is really as unwise as to do the converse, i.e. to exclude
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purely observational papers which have no interpretative content, mathematical
herwise. Not only does this indicate a misunderstanding of the very nature
of science and its components of observation, speculation (or hypothesis), and
deduction (perhaps by means of a mathematical model), but in other areas of
scienos one can readily see that all these different types of science, including the
extremes, have made profound contributions. Examples of purely theoretical
work, sometimes untested and untestable for many years, include Einstein's
theory of general relativity, Maswell's electromagnetic theory, and the prediction
of the neutrino; all these were enormously stimulating to the subject. Examples
of pure observation are early work in atomic and molecular spectroscopy,
superconductivity, and antibiotic activity. It would have been a great loss if these
contributions had not won publication, and one could speculate endlessly on
what might be missing from current science as a result of editorial policy. Of
course many papers lie at neither extreme, and they contain a mix of observa-
tional data and interpretation, sometimes by means of a model.

The referees and editors of some biological journals sometimes demand of
modelling papers the satisfaction of criteria that are seldom applied to other
papers, and they may also require the meeting of objectives of their own choosing
(such as an extensive ‘validation’; see p. 31). It should be remembered that
science progresses mostly by quite modest steps, and this is true of theoretical
work as well as experiment. Small but useful contributions are often noticed far
away, where further work may be stimulated. Just as experiments may lead to
further experiments, so may models lead to other models, experiments may
stimulate models, and models may give rise to directed experimentation. Further,
one may construct different models of the same system for different purposes,
and confronting a model with experimental data may or may not be needed to
meet the modelling objectives. Although the desirability of comparing models
with experimental data is self-evident, anyone who has attempted to do this will
be aware of (1) the difficulties of finding suitable data, (b) the operational prob-
lems of comparing complex mechanistic models covering two or more hier-
archical levels with data, and () the inconclusiveness of such procedures even
when carried out. Indeed, in some areas, such as modelling the geochemical
carbon eycle or the ‘nuclear winter' scenarios, comparison of theory with experi-
ment may be impossible, yet there is little doubt about the value of these models.
It seems to be of more scientific value to examine qualitatively the trends and
patterns predicted by the model the topology of the responses is of greater

significance than precise numerical values, at least in the current state of the art. -
Perhaps the most important thing is that the objectives stated by the author(s) -
should be given close scrutiny, and one should assess to what extent these -

objectives are legitimate and are subsequently met.

L8.1 Requirements for publication

It seems that editorial policy and authors should be concerned with five principal )

items:
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(i) clarity;

{ii} economy;

(iti) methodological correctness;

(iv) not a trivial repetition of already published work;

{v) accuracy.
Referees and editors who pass judgements that 8o beyond these five points are
assuming an authority that belongs properly to the scientific community as a
whole. Work that satisfies the above criteria should be published so that evalua-
tion by the scientific community can proceed unhindered.

Clarity is essential if the work is to be understood, and if it cannot be under-
stood, at least by a few who can communicate it further, it will not have any
value. Readability and clarity can usually be assessed by workers in the same
general area, and a specialist in the particular topic is not necessarily required;
indeed, specialists may be so concerned with what is being said, that they find it
difficult to evaluate how it is being said.

Economy is needed simply because journal space is expensive. Clarity and
economy may sometimes be in conflict, but more often they go together.

Methodological correctness is usually easy to assess. In many areas of both
mathematics and experimental technique there is a wide acceptance of a basic
methodology, and in these areas the work should be free from error. For the
mathematical modeller, this might include algebra, caleulus, and numerical
analysis; for an experimentalist this could include the measurement of tempera-
ture and dry mass, and many chemical techniques.

The fourth item—that the work should not be a trivial repetition of work that
has already been published—is self-explanatory. All work stands on what has
gone before, and to give continuity, comprehensibility, and context, there will
always be some repetition. However, there must be some non-trivial aspect of
the newly reported work which is different from previous work, This may be
interpreted as a requirement for ‘originality’, although what is original may be
a subject for much debate; for instance, a synthesis of existing concepts may be
unoriginal at one level, but may lead to novel insights. Modelling is often about
the integration of ideas—the whole is more than the sum of the parts, although
" itis explainable in terms of those parts and how they fit together (Section 1.2.2,

p.8).

With regard to the fifth and last item, accuracy, authors should realize that if
they allow minor errors of referencing, style, tabulation, equation layout, and
typing to appear too frequently in the final manuscript, this must cast substantial
doubts on the thoroughness and correctness of the work, and greatly reduces its
overall credibility.

There is no wholely objective way of scoring a piece of work with respect to
these attributes or of combining the attributes into a single score. One manuscript
may be rather obscure but highly original, whereas another might present little
new at the ideas level but may be a lucid and accessible exposition of a difficult

“topic; the originality of the latter lies in its lucidity. Many different types of
contribution play a valuable role in furthering science. The scientific community




Plant and crop modelling

has its own way of sorting out the wheat from the chaff. It is possible that a wider
adoption of ‘open referseing’ would be beneficial. This would encourage referces
to be more objective in their criticisms. It would not be possible to express
options or prejudices under the shelter of anonymity; in science (and indeed
elsewhere) there should be no place for secret judgements. For most of us, it is a
continual struggle to regard our views and attitudes as ‘working hypotheses’, but
open refereeing could help greatly in this respect.

Exercises

L1 The Gompertz growth equation in differential form is

dW . .

= e We ™ with W = W, at time t = 0.
W a state variable denoting dry matter with initial value Wos tg and D are constants.
Write this single differential equation with explicit time dependence as two differential
equations for two state variables, Suggest a biological interpretation.

L2 The compartmental scheme X — 7 o - where the rate constants into and out of
compartment Z are both k has the differential equation dZ/dt = k(X — Z). Show that the
integral squation

ity = k f X yexp[ kit — t')1dt’
5 equivalent to the differential equation above. This is equivalent to a remembered
variable as in eqn (1.5h), with the weighting function equal to & exp{—k{t — t')]

lse Buler's method of eqn (1.7d) to integrate numerically the differential equation
=% with x = | at time 1 = 0. Use a time interval At = 0.1, and perform the

culation over three time steps up to £= 0.3. Also check your results against the
analytical solution.

L4, Use the second-order trapezoidal method of eqn (1.8§) to rework the integration in
Exercise 1.3, Note the greatly increased accuracy.

1.5, A model has been fitted to 84 data points by adjusting four parameters to minimize
the log residual sum of squares R {eqns (1.11d) and (1.11e}), obtaining R{minimum) = 0.8
Caleulate the mean residual sum of squares and estimate the average relative error {or
Iack of fit) between prediction and observation. Assume that the error residual (total) is

found to be 0.4 with 50 degrees of freedom. Is the model giving an acceptable fit to the
data at the 10 per cent probability level?

Lo, Suppose that the fractional carbon content fe of plant tissue is defined by the equation
Wi = fo W, where W, {kilograms of carbon) and W {kilograms of total dry matter) denote
the masses of carbon and total plant dry matter respectively. Derive the units of Je. Can

these units be simplified? What are the units of leaf area index (LAI) and can these be
smplified?

2
Some subjects of general Importance

2.1 Introduction

In this chapter we consider some topics which are of general importance in the
plant sciences, and are useful for much of the subsequent material of the book.
We begin by considering the basic system of units and conversion factors. This
is an area where confusion can often arise, but can easily be avoided. We then
consider some of the principles of enzyme kinetics, since it is possible to derive
from enzyme-kinetic considerations several functions which are of considerable
utility to the modeller, as they are mathematically well behaved and have
biologically interpretable parameters. An added advantage of understanding the
basic concepts of enzyme kinetics is that it gives some insight into the underlying
biochemical processes involved in plant and crop modelling. The final topic
covered is cell division and organ growth, which is relevant 1o the difficult
area of differentiation and development, and again provides useful background
knowledge for modelling plant and crop processes.

2.2 Units and conversion factors

Confusion that arises from the choice of units can cause unnecessary problems
in plant and crop modelling, and in science in general. For example, single-leaf
photosynthesis may have units mg CO, (m? leaf) ™" s™*, and crop yield may have
units kg (dry matter) ha™'. The mixture milligrams and kilograms for mass, and
square metres and hectares for area within the model invites error and confusion.
Itis important to adhere to a consistent set of units throughout any model. Any
conversions to what may seem more appropriate units should be made at the
end of, or preferably outside, the model. By doing so, the model is independent
of conversion factors, and the modeller is in no doubt as to the units of quantities
within the model. Another important advantage of this approach is that it
facilitates the essential check for dimensional consistency of equations which
should always be done.

In this book, we use the now almost universally accepted International System
of Units (SI) (Royal Society 1975), with one exception (discussed below) in
regard to the mole as the amount of substance. The basic units for mass, length,
and time, are kilogram (kg), metre (m), and second (s). Derived units for quantities
such as energy (joule (1), pressure (pascal (Pa)), and force (newton (N)) are all
defined in terms of these base units. For dynamic models of crop growth over
the growing cycle of the crop the day may be the natural description of time and
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in such cases will be used, where

tday = 86400 s. {2.1a)

2.2.1 Relative molecular mass and kilogram mole

We shall first define these units as they will be used in this book, and then relate |

them to the SI definitions. In so doing we shall highlight the weaknesses of that
system,

A kilogram mole tkg mol} is defined as that amount of a substance which

contains N, units, or entities of the substance, where N, is Avogadro’s number, -
Choose a reference substance where the mass of one entity is m, kg. By definition -

Nam, = r kg (kg mol)™!,

where r is the mass of | kg mol of the reference substance. In (2.2a), either N, or
r can be assigned an arbitrary numerical value. We select a reference substance
with known m,, define r, and then derive the corresponding N,. Following
convention, the reference substance is taken to be carbon 12, and r is defined as
12 kg (kg mol)™, so that

Namiae = 12 kg (kg mol)™!, (2.2b)

and this defines N, as

Nx = 6.022 x 10%¢ (kg mol)", (2.2¢)

It follows from these equations that the kilogram mole is defined as the amount
f;vf‘ smimwm of a system which contains as many elementary entities as there are
in 12 kg of carbon 12; that is, the mass of 1 kg mol of carbon 12 is 12 kg Now

consider # substance with n entities, each of mass m kg. The total mass M of the
substance is

M = nm kg,

The quantity Q of the substance, measured in kilogram moles, is

n
. .
Q A £ mol
We can now define the molar mass or relative molecular mass i as
M
o o kg (kg moh)™, (2.26).
which, using eqns (2.2d) and (2.2¢), is equivalent to
# = Nym kg (kg mol)~*. (2.29)
Eliminating N, , using eqn (2.2a), we can write this as
=k (kg mol)™! 2.2h)
p= oy ke (kgmol) . (2.2h)

(2.2a) -

(22d) §

(2.2¢)

AR i g -

L o2
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Now, if carbon 12 is used as the reference, then this states that the relative
molecular mass is the ratio of the average mass per molecule of the natural
isotopic composition of the elements to 1 /12 of the mass of an atom of carbon
12. It is important to note here the factor 1/12 actually has units kg mol kg™!
(eqns (2.2a) and (2.2b)) and the relative molecular mass has dimensions kg
(kg mol)™!. The relative molecular mass of any substance can now be calculated.
For example, Heo, = 44.0098, which means that a kilogram mole of CO, is
44.0098 kg of CO, (the value is not exactly 44 since there are other 1sotopes

- apart from carbon 12 and oxygen 16).

In these definitions, carbon 12 has been used as the reference. However, the
choice of carbon 12 is arbitrary, and oxygen 16, hydrogen 1, or any other
elemental isotope could be used. This follows from Avogadro’s law that a unit

- volume at standard temperature and pressure contains the same number of
- molecules, regardless of what those molecules are. For example, if oxygen 16 were

used then, since

Misg 16 _—
=0 22
My 12 ’ ( 2)

egn (2.2b) would become

Namiso = 16 kg (kg mol)™*, (2.2§)

and the values for the relative molecular mass for any substances would be
unchanged.

Itis not always appreciated that relative molecular mass is not dimensionless,

- but has dimensions kg (kg mol)™!, although this is apparent from the above

equations. The impression scientists generally have is that a mole is the molecular

“weight in grams; converted to the present units, a kilogram mole is the relative
- molecular mass in kilograms. This statement is a special case of eqn (2.2f) which
_ ¢an be rewritten

M = 0, (2.2k)

~ sothatif Q = 1 kg mol, then M is numerically equal to p.

Now consider the SI definition of the mole and the reasons why we feel it to

“be inadequate. The SI definition of the mole is the amount of substance of a

system which contains as many elementary entities as there are atoms in 0.012
kgofcarbon 12 (Royal Society 1975, p. 22). The SI definition of relative molecular
mass is the ratio of the average mass per atom (molecule) of the natural isotopic

‘composition of an element (the elements) to 1/12 of the mass of an atom of the

nuclide '2C (Royal Society 1975, p. 15). In this definition, it follows that the factor
1/12 has units mol g™ which is equivalent to kg mol kg™'. There is an obvious
inconsistency here, in that the gram appears, and this is due to the SI definition
of the mole. 1t follows that the relative molecular mass of carbon 12 is 0.012 kg
{mol)™*, which is clearly unsatisfactory. Another example is, say, oxygen, which
according to this definition has a relative molecular mass of 0.032 k g (mol)"! {or,

.-more accurately, 0.0319988 kg (mol)™'), although most scientists would pive the
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value as 32 If the kilogram mole is used, as defined above, then the units are
irely consistent; for example, the relative molecular mass of oxygen is 3%,‘9988
kg (kg mol) ', A further point to note is that, according to our set of definitions,
Avogadro's number N, is a factor of 10° greater than as defined by the SI system
(Royal Society 1975, p. 44).

We use the term relative molecular mass, which is that recommended by tvhe
Royal Society (1975) and replaces the traditional term molecular wex‘gi;t. Relative
molecular mass is preferred as it gives quite an accurate indication of the
definition of the term. The term molecular weight is inappropriate and should
be discarded; s weight is a force and has dimensions of newtons (N). Molar mass
would be acceptable, although it is better to use only one term.

222 Concentration

The concentration € of a substance, is given in units of kilogram moles of a
substance per cubic metre (kg mol m™ %), This is 10° times the SI deﬁ{xition. Note
that the unit of 1 kg mol m™? is exactly equivalent to the older unit of 1 gram
molecule per litre, which can be convenient.

From the gas laws, the copcentration of any gas is

._ P
" RT
where P is the pressure (Pa), T is the temperature (K), and R is the gas constant

(8314 J K "'(kg mol)™"). Thus at normal temperature (273.15 K) anfi pressure
{101 325.0 Pa, equivalent to 0.76 mHg), the concentration of any gas is

(2.3a)

€ = 0.044 618 kg mol m~2. (2.3b)
At arbitrary temperature and pressure, therefore, the concentration is
27315 p .
S e (044 618 kg mol m ™3, (2.3¢)
= T ToTa25p 044618 ke

0 use the term concentration in another sense in crop models to define
the substrate status of the plant or crop. This is discussed below.
2.2.3 Density

The density p of a substance is the number of kilograms of the substance‘get
cubic metre (kg m™?). This is exactly the same as the SI unit. The quantl'un
density, relative molecular mass, and concentration are related by the equation

density = relative molecular mass x concentration. (2.3d)

224 Carbon dioxide concentrations and densities

The concentration and density of CO, are obtained directly from eqns (2.3c) and

{2.3d}. Plant scientists generally refer to CO. concentrations in units of parts per
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miilion (ppm). Parts per million, defined as volume parts per million, is related
to concentration and density, as defined above, by

C = ngpmz'l}.lS P

S e - 4 -3 .
105 T 1013250 044618 kg mol CO, m (2.4a)
and
_ppm27315 P L L,
T 105 T 1013250 636 kg CO m, (2.4b)

where the relative molecular mass e, of CO, is 44.009 8 kg (kg molyt,

The term parts per million has two deficiencies. First, it is not clear whether
the definition is kilograms per million kilograms or molecules per million mole-
cules, although traditionally it is taken to be the latter (as in the above equations)
and this problem can, in part, be overcome by using the term volume parts per
million (vpm). The second, and more serious, problem is that photosynthesis
depends upon the absolute number of CO, molecules per unit volume, and not
just the proportion of CO; molecules in the air. In any model, therefore, it is
more appropriate to use the definition of concentration above. There are times
when parts per million may be useful as it is quite easy to visualize— for example,
when talking of the general increase in atmospheric CO, levels during this

century from around 300 to 340 ppm-—but in mathematical models it should be
avoided.

225 Plant composition

 The simplest means of defining plant composition is to consider plant dry matter.
‘Although this may be quite sufficient for many purposes, it soon becomes

necessary when modelling plant processes to incorporate the metabolic function

_ of the various components within the plant, For many purposes it is helpful to
- Separate the plant into substrate and structure. Structure comprises the cell
- wall material—mainly cellulose and hemicellulose—and the ‘machinery’ of the

plant—protein. The remainder of the plant is taken to be substrate and this
includes labile compounds such as glucose and amino acids. Clearly this js a

simplification. However, it is the logical step from considering plant dry matter

alone and, as is apparent from many of the models considered in this book, does
permit considerable progress in plant and crop modelling.

The structural dry matter will generally be denoted by W and substrate by
W, although other subscripts will be introduced to define, for example, shoot
and root dry matter, or carbon and nitrogen substrate. A useful technique for

Adefining the plant status with Tespect to a particular substrate is to look at the
 Substrate concentration, which differs from the definition of concentration given

above, and is given by

We/Wg. {2.5a)
The dimensions of concentration in this context are kg substrate (kg structure)™!.
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226 Water potential

Water potential an important variable when considering the water status of a
plant or crop. Any physical system will attempt to minimize its potential energy,
and this is the basis for the understanding of many physical problems. For
example, if a chain is suspended from two points (not necessarily at the same
height), then the profile of the chain can be derived by calculating the shape
required to minimize the potential energy {the curve is the well-known catenary
given by the hyperbolic cosine function). In an equivalent way, in any system
which involves water, the water will flow so as to minimize its potential energy.
Later in the book (Chapter 14 and 15) we look at transpiration by a crop canopy
and crop water use, and we need to use the concept of the water potential, which
is the energy of the water in the crop, soil, or air.

An adequate definition of water potential for most plant and crop studies is
the amount of energy required (o transport a unit mass of pure water from a
reference state to its position in the system. Water potential is therefore measured
relative (o some reference height, which is usually taken to be ground level, Water
potential can be considered, in simple terms, as the energy per unit mass of water,
and has units of joules per kilogram (J kg™*).

Other units often used are the pascal (Pa) (or more commonly the kPa) and
the bar, which are pressure units. The pascal is the SI unit of pressure, and has
dimensions of force per nnit area (N 'm™~?) which is equivalent to J m~3, Conse-
quently, if water potential is defined in pascals, this is energy per unit volume
rather than per unit mass. Since a given mass of water can occupy a different

volume, depending on the temperature and pressure, it is more appropriate to .

use J kg’ The density of water depends on temperature and takes its maximum

value of 1000 kg m™3 at 4°C. Using this value, J kg™ and the pascal are related

by
Il kg™ = 10° Pa = | kPa, (2.6a)

The bar is not an §1 unit, but is a unit of pressure in the cgs (centimetre-
gram-second) system which preceded the SI system. The bar is defined as

I bar = 10° Pa, ' {2.6b)

50 that
FT kg™ = 0,01 bar, (2.6¢)

There are perhaps three main reasons why the bar is still retained in some
quarters, despite its not being an SI unit. The first is that 1 bar is approximately
equal to standard atmospheric pressure, which is 101 325 Pa = 1.013 25 bar. The
second 19 that plant water potentials generally lie in the range 0 to —20 bar,
which is an easy range to work with. The final reason is that, in practice, water
potential is often measured by measuring a pressure exerted by the water in the :
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system. In all branches of science, quantities are measured both directly and
indirectly, and there is little Jjustification for ascribing units on this basis,

2.3 Useful responses derived from enzyme kinetics

We now consider some of the basic ideas of enzyme kinetics both as an introduc-
tion to the subject and in order to derive several useful equations for the plant
and crop modeller. The equations that are derived can be used both as direct
models for the reaction types considered and also in a more qualitative sense to
Tfepresent aggregated processes. For example, the biochemistry of protein synth-
esis from sugars and amino acids is complex but, for some modelling purposes,
itmay be appropriate to represent this by using a bi-substrate Michaelis- Menten
equation. The reaction schemes and equations considered below cover all the
equations of this type that are used in this book. For a more complete discussion
of the topic, including a historical perspective of its development, the interested
reader should consult Dixon and Webb (1979),

2.3.1 Michaelis-Menten equation (rectangular h yperbola)

The most widely applied model of enzyme kinetics is the Michaelis-Menten
equation. The reaction scheme is

kﬂ kaz

E+S§.-:ES-—+E+ P, (2.7a)

where E, S, and P indicate the enzyme, substrate, and products of the reaction

respectively; k., k_,, and k, 2 are the rate constants for the reactions, where the

plus and minus signs refer to forward and reverse reactions. ES denotes the

enzyme-substrate complex. In the steady state the concentration of ES is con-

stant, so that the rate of production of ES must equal the rate of degradation of
ES:

ki [EJ[S] = (k_, + k,,)[ES] (2.7b)

where the square brackets denote concentrations. If E is the total concentration
of the enzyme present, which does not vary with time, then

Eo = [E] + [ES] (2.7¢)

(that is, the total number of kilogram moles of enzyme is constant). Combining
€qns (2.7b) and (2.7¢) and rearranging leads to

(ES] = Xni[SIE, (2.7d)

This gives the concentration of substrate molecules which are combined with
(adsorbed onto the surface of ) the enzyme molecules in terms of the substrate
concentration [S] and the total enzyme concentration E,. A similar equation
regarding the adsorption of gas molecules onto solid surfaces, which is known
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as Langmuir's isotherm, was obtained many years prior to the work of Michaelis
and Menten.

if the speed of the steady-state reaction is v, then

ki k. ,[SIE,
ki [ST+koy + kg,

(2.7¢)

which can be written

UalS]
p = bS] af
'K +[S] (2.71)
where
Um=kiEg  and K =Kotke 27g)
+1

Uy 18 the maximum speed of the reaction which occurs when all the active sites
on the enzyme molecules are occupied by substrate molecules. K is known as
the Michaelis- Menten constant, and is the value of the substrate concentration
for half-maximal speed » = 4v,,. Equation (2.7f) is illustrated in Fig. 21. 1If
Kizek y, then Kxk_, /k.; and the first stage of the reaction is virtually in
equilibrium. In this case eqn (2.7d) becomes

(2.7h)

and K can be regarded as a binding constant (or dissociation constant} in that
it indicates the proportion of enzyme E that is bound to the substrate S; thus a ‘
low value of K means that the enzyme has a high affinity for the substrate, and

the reaction saturates at low concentrations of substrate.
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Substrate concentration ISI/K

Fig, .1. The Michaelis- Menten equation (2.7) for the

reaction speed v as a function of
subsirate concentration [S]. There is an asymptote at v

= U, and v = Ly, when [S] =K,
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Fig. 2.2, The rectangular hyperbola {eqn (2.70)). The asymptotes Vo= yeand x = — K are

shown.

Equation (2.7f) is known as a rectangular hyperbola. The name is apparent
from the illustration in Fig. 2.2 where the equation

Y=t (2.7i)

is presented. There are two branches to the curve, both approaching asymptotes
defined by the lines

Y=y and X = — K 2.7

These two asymptotes are at right angles to each other, and this is the basis for
the name rectangular hyperbola. Equation (2.7f) is a particular case of the curve
for the range x > 0,

An alternative formulation for the rectangular hyperbola is

o Ym
S et (2.7k)

where it is readily shown that the constant e is the initial

dy ‘
a; (X = 0) = L,

slope of the curve:

(2.1

The two forms presented for the rectangular hyperbola (eqns (2.7f ) and (2.7k))
are mathematically equivalent in that K and « are related by

K=y (2.7m)
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3
The choice of which form to use will depend on the nature of the problem. |

For example, if it is convenient to prescribe the substrate level at which the
eaction speed is half its maximum, then eqn (2.7f) is appropriate, whereas if it

eqn QQ?M might be preferred. Both forms are used throughout this book.

2.3.2 Threshold response equations

The rectangular hyperbola does not have a point of inflexion. However, many
biological processes show this type of behaviour. An equation of this form can

be derived by modifying the Michaelis—Menten reaction scheme {eqn (2.7a))
to

K*? %1
E + 2SS, YE + P. (2.82)

In this case molecules of substrate § can combine with the enzyme E at two sites.

Using the approach of the previous section, it can be shown that the speed of

this reaction is given by (Exercise 2.1)

__valSP?
T KT ST

(2.8b)

where v, and K‘Exm given by eqns (2.7g). This equation is analogous to eqn (2.7f}'

and is illustrated in Fig. 2.3 the initial slope is zero, the asymptote is v = v,
v = jus when § = K, and there is a point of inflexion at S/K = 1/{/3 (Exercise
21

Equation (2.8a) can be generalized to

e %k‘“ kyy
E + n&i«mﬁanﬁﬁ» P
B

N
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Substrate concentration {S}/K

Fig. 2.3, The sigmoidal response curve {eqn (2.8b)) for the reaction speed v as a fune-
tion of substrate concentration [$1. As for the Michaelis-Menten equation, there is an
ASYMPLote at v = vy, and v = 4o, when [§] = K.

@ appropriate to incorporate the reaction rate at low substrate levels, then

{2.8¢)

3
:
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where n is a positive integer. According to this scheme, there are n active sites
per enzyme molecule for the substrate, Proceeding as above generates the family
of curves given by (Exercise 2.2)

{2.8d)

Again, v,, and Khare given by eqns (2.7g) and v = {0, when S = K. The equation
for v is illustrated in Fig. 2.4 for several values of n: when n = 1, the curve is the
Michaelis- Menten rectangular hyperbola (eqn (2.7f)) as illustrated in Fig. 2.1
and there is no point of inflexion; for n = 2, the curve is the same as that illustrated
in Fig. 2.3 and there is weak sigmoid behaviour; as n increases the sigmoid
behaviour becomes more and more pronounced, until in the limit n — oo a step
function is obtained. For all values of n (n 2 1) the asymptote is Uy Forn 2 2
the initial slope is zero, and there is a point of inflexion at (Exercise 2.2

{2.8¢)

- Although eqn (2.8d) has been derived from the reaction of eqn (2.8¢), for some

applications it can be regarded as being a useful empirical equation and there is
no reason why n need be integral.

Equation (2.8d) and Fig. 2.4 show a type of ‘switch-on’ behaviour where the
sharpness of the switching characteristic depends on the value of n. A similar
relation can be constructed to represent ‘switch-off’ behaviour, and has the form

(2.8f)

]

Vinp - - -

........ e
n= 8 I
-
'§ "o
e Lyl
gz
= .
2 h
o 5
o ;
0 i 2 3 4 5

Substrate concentration {S}/K

Fig. 2.4. Sigmoidal ‘switch-on’ response {(eqn (2.8d)): n = 1 and n = 8 are indicated, and
the intermediate curves are for n = 2 and n = 4. All curves have an asymptote at v = Ve
and v = Ly, when [S] = K.
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_____________________________________ (2.9a) and (2.9b) to eliminate [8,] lead to the quadratic equation
K+[S h
v? — t)(_w{;m} + vm) + “m[S] =), (2.9¢)
r ¥
g which can be factorized to give
g2 (v - —Ewliw) (0= v,) = X0 (2.9d)
g r r
3 This defines a pair of curves with asymptotes
S]+K
= g—l:—mw and ER {2.9¢)

3 4 5
Substrate concentration [S}/K

[S] is only physiologically defined for [S12 0 and v in the range 0 < v < v,
However, it is instructive to look at the solutions to eqn (2.9d) over the whole
range of values of [S] and », and so the curves given by eqn (2.9d) are presented
in Fig. 2.6 where the full curve represents the physiologically realistic part of the
solution while the broken curves denote the unrealistic solutions,

The non-rectangular hyperbola can be written in other ways, The formulation
given by eqns (2.9¢) and (2.9d) is useful because it has been derived from a simple
model, although it may not always be the most convenient. An alternative is to

~ write (replace [S] by x, v by ¥, v by y,., 1r by ®/0, and K by y, (1 — 0)/a)

0y — (ax + y, )y + axy,, = 0. (2.9f)
For 6 = 0 this reduces to a simple rectangular hyperbola given by

Fig. 1.8 Sigmoidal ‘switch-off’ response {eqn {(2.8()k n = 1 and n = 8 are indicated, and
the intermediate curves are for n = 7 and n= 4. For all curves p = U, When [S] = 0, and
e du, when [S] = K.

approaches zero as [S] increases for all values of n(n = 1). The point of inflexion
1s still given by eqn (2.8e) [Exercise 2.2).

9
4

Non-rectangular hyperbola

The non-rectangular hyperbola is a useful generalization of the rectangular
hyperbola as it is a more versatile curve. One way of deriving it is to assume that
there is an enzyme-substrate reaction which can be described by a rectangular
hyperbola, but that now the substrate has to diffuse across some boundary from
an eaternal region to the site of the reaction, In this case, the aim is to derive an
expression for the speed of the reaction in terms of the external substrate
concentration. As an example, this type of scheme might be regarded as repre-
senting a reaction that takes place within the root system of a plant where the

substrate has to diffuse across the root cell membranes. The speed of the reaction
1§

y= P (2.9g)

2T USIHK)

- I

__valS)
CKST

where the subscript i indicates the internal substrate. It is assumed that the
subsirate diffuses across some boundary to the site of the reaction, and that the
system 15 in the steady state. This means that [8,] is constant so that the rate of -
utilization of substrate at the site of the reaction must equal the rate of diffusion
across the boundary, and hence

{2.9a)

cLo]o [S]

_181-18]

[

[

{2.9b) Fig. 2.6. The non-rectangular hyperbola given by the solutions to the quadratic equation
{29¢). The asymptotes v = v, and » = ([S] + Kj/r are indicated. The broken curves

e . . . . indicate the physiologicall nrealistic solutions.
where [S]is the external substrate concentration and r is a resistance. Using eqns physiologically unrealistic solutions
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and for # = 1 it factorizes to
{}’ - ax)[y - ym) = () (2'9h}

s0 that y is given by the two straight lines

(ax X <y /a
Ym X > Yufo

For # lying in the range 0 < 8 < 1, the physiologically realistic solution for y is
the lower root of eqn (2.90) which is

(2.9i)

1 } :
¥ = splox + v = [loox + yp)? = 40axy, 112}, (29)

It can be shown that in the limit 8 — 0 egn (2.9j) reduces to eqn (2.9g) and for
# = 111 becomes eqn (2.91) (Exercise 2.3). For all values of 8 in the physiologically -

sensible range 0 € # < 1, the initial siope of the curve is

Cody

and the asymptote is (Exercise 2.3)

yix = o0) = y. 29)

The non-rectangular hyperbola for several values of 8 in the range 0 <O < lis

Hlustrated in Fig, 2.7,

The extra parameter § in the non-rectangular hyperbola gives more control -
over the response than is the case for the rectangular hyperbola. In general, when |

looking at responses which increase without a point of inflexion to an asymptote,
there are three basic features of the curve. The first is the initial slope, the second

G =
¥ o
e - MW
M //
-
x’j/ »—*’M
S 8=0
e
0 X

Fig. 7. The non-rectangular hyperbola teqn (2.94)) 0 = 0 and 9 = 1 are indicated and
the intermediate curves are for § = 0.5 and # = 0.9. When § = 0 eqn (2.9j) reduces to the
rectangular hiyperbola (eqn (2.9)) and for 8 = 1 it becomes two straight lines (eqn (2.9i)}
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is the asymptote, and the third is the sharpness of the response i.e. how rapidly
it approaches the asymptote. With the two-parameter rectangular hyperbola
there is only control over two of these features. With the non-rectangular hyper-
bola, however, the extra parameter gives control over all three aspects of the
response, which is often useful.

234 Bi-substrate Michaelis—Menten equation

Consider now a reaction depending on two substrates. We make the simplifying
assumption that all reactions are in equilibrium, and that the order of the
reactions is random. The system can be represented by the reaction scheme

E + A=FA (2.10a)

E + B=2EB (2.10b)
EA + B=EAB (2.10c)
EB + A = EAB (2.10d)

where A and B are the substrates. The equilibrium equations corresponding to
these reactions are

[E][A] = K,[EA] (2.10e)
[E][B] = K4[EB] (2.10f)
[EA][B] = K4[EAB) (2.10g)
[EB][A] = K,[EAB]. (2.10h)

K4, Kg, K3, and K/, are the binding constants for the equilibrium reactions. It
is assumed that the product of the scheme is formed by the reaction

EABSE + P, (2.101)

so that the speed of formation of P is

v = k[EAB]. (2.10§)

The aim is to derive an expression for v in terms of [A] and {B]. Equations

(2.10¢)-(2.10h) must therefore be used to eliminate [E], [EA], and [EB] to give

[EAB] from which v is given by eqn (2.10j). However, since the total concentra-
tion of enzyme is constant

E, = [E] + [EA] + [EB] + [EAB], {2.10k)
there are five equations for the four unknowns [E], [EA], [EB], and [EAB]. For

_ the equations to be consistent, it can be shown that {Exercise 2.4)

KAiKy = KyK)y = K 3, say. {2.100)
[EAB] can now be derived (Exercise 2.4) and vis given by
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B

p = PO S— (2.10m)
" T U Ka/[B] + Ka/[A] + Kag/IAT[B]
where
Ve = kE,g. (2.10n)

Equation (2.10m) describes the speed of the reaction in terms of the substrate

levels. If the concentration of either substrate is kept constant, then the response
to variation in the other substrate is a rectangular hyperbola. For example, if »
is plotied as a function of [ A, the initial slope of the curve is

B Uﬂ’l B

S —— {2.100) -
KA[B] + Kyp
and the asymptote is
U [ B] [
L - 2.10
(B] + Kp 1o

Simlar expressions apply when v is expressed in terms of [B].

For the special case where each substrate can only combine with the enzyme -

at a specific site on the enzyme and this is unaffected by the other substrate,

K, =K, and Ky = K3, {2.10q)
and eqn (2.10m) (using eqn (2.101)) simplifies to
. Ve (2.101) -

T+ KJIAD( + Ky/[B])”

This type of equation is very useful for representing processes that depend on

the supply of two substrates, and is simpler than eqn (2.10m).

“*

235 Inhibitors

The final equations to be considered are the generalization of the Michaelis—
Menten theory, which led to the rectangular hyperbola eqn (2.7f), to include

ihibitors. Inhibitors which manifest themselves as increasing the K parameter -
without altering v, in the Michaelis— Menten equation are termed competitive; -

those which do not influence K but result in a decrease in v, are known as
non-competitive, There are several other forms of inhibitors which involve

combinations of these effects, and these are discussed by Dixon and Webb (1979).

We restrict attention to the two simplest forms known as fully competitive and
fully non-competitive inhibitors. The two equations derived below (eqns (2.11h)
and {2121} provide useful means of representing reactions where a substrate
is required but the reaction is inhibited by other components. As for the bi-

substrate Michaelis-Menten equation, it is assumed that all reactions are in

equilibrium,

o ———

-

ch

T
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Fully competitive inhibitor The system is represented by the reaction schemes
E + S=ES, {2.11a)

E+I=El (2.11b)

where S is the substrate and I the inhibitor. It is apparent from this reaction
scheme that if an enzyme molecule combines with a molecule of the inhibitor it
is completely unavailable to the substrate. The equilibrium equations for these
reactions are

[E1[S] = K¢[ES] (2.11¢)

and
[EJ[1] = K\[EI], (2.11d)

where K and K, are the binding constants for the equilibrium reactions. As for
the previous schemes, the product P of the reaction is formed by

ESSE + P, (2.11¢)
and hence the speed of formation of P is
v = k[ES]. (2.11)

Again it is assumed that the total concentration of enzyme E,,, is constant, so that

Eq = [E] + [ES] + [EI]. (2.11g)

~ Eliminating [E] and [EI] from eqns (2.11c), (2.11d), and (2.11g) to obtain [ES]

and substituting in eqn (2.11f) gives (Exercise 2.5)

U

b= YRl (2.1th)
L+ (Kg/[SDH + [T)/K,)
where v, given by
U = kEg, (2.11%)
is the maximum speed of the reaction and occurs in the hmit
' Ks ( m) |
~~~~~ ES I AR ] (2.11))
(s] Ky
which requires

8 i

This implies that the substrate is non-limiting and is in such supply that it
occupies virtually all the sites on the enzyme, thus preventing any effect of the
inhibitor. It is clear, therefore, that eqn (2.11h) corresponds to the Michaelis-

Menten equation but with
S (1] ‘ ;
K=Kl +54) 2,11
s( K { )

i
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Fully non-competitive inhibitor  For the fully gompctxtwtc I’:nh:’);;:;::):vcl fszix;.vcghma_
he enz g ine with either the substrate or the .

the enzyme could combine with &1 ‘

hined with the latter, then it was completely unavailable to the substrate f?r th;

formation of products. The type of inhibitor knov;n as fiu}ly (rixoni;;:;n:g:t; f;iv:i .
A i i SO L be formed, and w

yne where an intermediate complex [ESI}_ may be fc

Zﬁff enzyme for either the substrate or the inhibitor is unaffected by the presence

of the other. The reaction scheme 1s now

E + 8=ES§

E + 1=El (2.12b}’

ES + 1=ESI (2.12¢)

El + S=ESL (2.12d}

The equilibrium equations are

[EJ[S] = Ks[ES] (2.12¢)
[ET[1] = K,[E1] (2.126)

[EIN[S] = K [ESI] (2.128)

{ES1[1] = K\[ESI], (2.12h)

where there are only two binding constants since, as stated above, the aﬁinAity[orf
t:hé enzyme for either S or 1 is independent of the presence of the otl‘lcr‘ fs l;;
the %’ul}} competitive inhibitor in the previous secu;:n, the (f;;r;}&;tg:%nzs p::
: ’ ction is gi . tegn (2.
woduct P of the reaction is given by eqn (2.11¢), so tha ines
f;:x;&i of formation of P. Equations (2.12e)—(2.12h) must now be used to :;:1}:;?;;
[El] and [ESI] in order to obtain [ES] and hence the reaction speed v. o
there are four equations and only three unknowns, the equations are i(;?‘s :
since dividing either eqn (2.12¢) by eqn (2.12f) or eqn (2.12g) by eqn (2. ) gives
(5] _ Ks[ES] 21
(11 K [EI] ,
Proceeding as above, it can be shown (Exercise 2.5) that the reaction spwd/’nu
given by

1= I”m {2.12]'} .

T {1+ KIS + [IV/KY)

* X 1 ‘- ]
The effect of the inhibitor in this case is to reduce the speed of the reactmn\h!

factor of 1 + [1)/K,, which is unaffected by the level of [S]. Also,

a5 [S] = 0,0 = vn = TR,

. i inhibitor is present. Ky
where v} is the maximum speed of the reaction when the inhibit p

v (ifml 4

A

2122) &
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is now equivalent to K in eqn (2.7f) for the Michaelis— Menten equation in that

when [S] = K, v = Ju?, {2,121

so that eqn (2.12j) is equivalent to the Michaelis- Menten equation (2.7() with v,

replaced by v,

24 Cell division and organ growth

We now turn our attention to the growth of an organ in terms of the cell division

- within that organ. Since this book is primarily concerned with processes at the

plant and crop levels in the hierarchical structure discussed in Chapter 1, this

~ topic is not of central importance, but it is useful to have some understanding of
~ this lower level in the hierarchy. We restrict attention to the dynamics of cell

division and do not consider cell growth in itself. However, it is important to
remember that cell division and growth are different processes, which may occur
separately or together. For further discussion of cell growth see Thornley (1981).

24.1 Cell division of a purely meristematic culture

Consider a culture comprising only meristematic {dividing) cells. It is assumed
that the cells divide by binary fission, where 1, is the time interval between
divisions, so that the maximum age of any cell is 1,4, and this is taken to be
constant for all cells. This assumption that T4 Is constant for all cells can be

relaxed, and the theory has been presented by Powell (1956). Let the equilibrium
age distribution of the cells be

#r), where 0 €1 g 14 and f ' dlrydr = |, {2.13a)
o

where ¢ has units of time ™. It is assumed that this is independent of time so that
for any time ¢ the proportion of cells of a given age will be constant. If M is the
eell number at time ¢, then the number of cells with ages lying in the interval t

lot+dris

M{t)yg(r)dr. {2.13b)
The number of cells that divide in a time interval d is

M(t)g(ry)dt. {2.13c)

With binary fission and assuming

that all the progeny cells are meristematic, the
mcrement in cell number is

dM = Mg(r,)dr. {2.13d)

. Wwedefine the cell number growth constant v (time™*) by

v = hity), (2.13¢)
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then
M v 2.131)
de

and M = Mo™ (2.13g)

where M, is the cell number at time t = 0. This is the uspal equation for
exponential growth of cell numbers. Now, sinf:,e 74 is the time bgtwcen cell
divisions, exactly all the cells present at time t will have doubled by time ¢ + T
50 that

Mt + 1) = 2M() (2.13h)
which, substituted in eqn (2.13g), leads to
yo1n2 (2.13)
Tq

Eqguations {2.13g) and (2.131) define the cell population M (,t) in terms 'of‘ the initial
cell number M, and the time interval v, between cell divisions. M (1) is illustrated
in Fig. 2.8,

Now consider the age distribution function ¢(t) (eqn (2.13a)). The number of !

cells at time ¢ of age t per unit age interval is

Mt)p(r).

Mernstematic cell number M

Pl

e

Y 1

8 10
Time ¢ (day)

0

[
B
on

Fig. 18, Meristematic cell number M (1) for cxponemial growth (eqns (2.13g) and (Zléig
The initial value M, is arbitrarily taken to be unity, and t, = 3 days (so that v =
day ')

2.13)

After an incremental increase dt in time, the number of cells of age T + dr per -

e e oD

~ where #y denotes ¢(r =
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unit age interval is

M(t + dr)g(t + dr). (2.13k)

However, the cells of age 7 at time f are exactly the same cells of age t + dr at
time ¢ + dr, so that (2.13)) and (2.13k) are equal, i.e.

dos

M(n)g(t) = M(t + dejg(r + dr). {2.131)

To proceed, we use the Taylor series which is defined as follows;

2
S+ h) = f(x) + B (x) + %g-f”(x)..‘, {2.13m}

where the primes denote derivatives with respect to x and n!
-+-3.2.1, which is referred to as n factorial. Expanding the terms
side of eqn (2.131) using the Taylor series gives,

= nafn - 1)(n ~ 2)
on the right-hand
neglecting terms of order dt® and

higher,
V] . ‘ «
M(t)p(r) = [M(t} + dz %{»(t}][wz) + dr 3f (r)], {2.13n)
which reduces to (again neglecting the terms in dr? )
d¢ 1 dM
T B e o 2.13¢
i ha S
Substituting from eqn (2.13g) and integrating gives
Plr) = goe ™, (2.13p)

0). From this equation it can be seen that young cells

predominate. Indeed, setting © = r, and using eqn_(2.13i), the physiologically

obvious result

Plrg) = Ji@{‘a

is obtained; that is, the number of cell

(2.13q)

s about to divide is half the number that

have just divided. ¢, is derived by noting that

M) = f * M) de
4]

(2.13n)
and hence
' J $(t)dr = |, (2.13s)
0
from which it immediately follows that
o = 2. (2.131)

#(0) s illustrated in Fig, 2.9,
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- dM
R S ) = JvM, {2.14a)
s — dr
e 04 S~ where the parameter 4 accounts for the fact that not all cells continue to divide.
S 4is constrained by
s
£ 03 A< (2.14b)
% 02 - since M cannot exceed the value for a purely meristematic culture. For constant
= 4, which corresponds to a constant value of 6, eqn (2.14a) integrates to
8
o
g This equation, which is analogous to eqn (2.13g), involves the new parameter A.
RE T 1 Toderive 4 it s necessary to consider the age distribution function ¢(x). Integrat-
&
= 0 { 2 3

3 ing eqn (2.130) for #(1), combined with eqn (2.14¢), gives
Cell age t(day)

$(1) = gpe 4 (2.14d)

for the age distribution of the cells, which is analogous to eqn (2.13p). Clearly,
#o will be affected by the proportion of cells that become non-meristematic, and
so both 4 and ¢, must now be derived.

Applying the constraint (2.13s), ¢y can be calculated as {Exercise 2.6)

Fig. 1.9, Age distribution #{r) of meristematic cells, corresponding to Fig. 2.8, and given
by eqns (2,13p) and {213t} Note that ¢(r,) = 16, (recall that 14 = 3 days).

Meristernatic !

v O

Av
mmmmmmmmmm $o = | et (2.14¢)
CELL CYCLE )
J— Ais derived as follows. Meristematic cells of age 14 are continually dividing and
C ) ca

producing cells of age zero. When the cells divide, a fraction 0 of these newly

formed cells remain meristematic, while the remainder are no longer meristem-
atic. Thus

<mmw> division

do = 204(z,), (2.14f)
| Differentiated | from which it can be shown that (Exercise 2.6)
% {vegetative) cells 06
wai o A=1+ i (2.14g)

Fig. 2.16. Scheme for meristematic cell dis 1s1on and the production of differentiating cel The total number M of meristematic cells is therefore (eqn (2.14c))

Ing\ 7
Mt) = Moexp[v(l +§§)£J {2.14h)

2.4.2 Cell division and its cessation

Consider now the case where only a proportion 8,0 < 8 < 1, of newly divided
cells continues to divide and the remainder are removed from the meristematic
system. (This is a different ¢ from that of (2.9f).) This could arise for several ;
reasons. Some of the newly divided cells may simply not be viable. Alternatively, .
some of these cells may be committed to a vegetative pathway of development -
which excludes cell division. This is likely to follow a period of purely meristema- -
tic growth. For convenience, we shall refer to non-meristematic cells as differenti
ating cells. This scheme, adapted from Thornley (1981), is illustrated in Fig 2.10.
The differential equation for M is now

and the age distribution is

«ﬁ(r)xaﬁoexp[—-v(l +-}I€-§)rd. (2.14)

M(t) and #(z) are illustrated in Fig. 2.11. For 8 = | the population is purely
~ meristematic and the solutions for M(t) and ¢(t) are identical with those of the

previous section. If $ < 6 < 1, M is an increasing function and young cells
- predominate. When =4 120 cn thet LY T O T SN . P
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% 10 and from the constraint (2.13s), ¢, is readily shown to be

2 do = 1/1,. (2.14k)
% 8 It can be shown (Exercise 2.6) from eqn (2.14e) that

B

o 6 lim ¢, = 1/1,, (2.14)
’”é A}

;g 4 - which is consistent with eqn (2.14k),

§ So far 4 has been taken to be constant, although this will not be the case in a
t o, determined organ, such as a leaf, where meristematic activity eventually ceases.

- _@Wi@» 0.5 Following Thornley (1981) it is simply assumed that the time course of # is given
S 0.25 by

¥ 1

0 2 4 6 8 10

de :
@ Time 1 (days) = - D, {2.15a)

dt

and taking D (which has dimensions of time™%) to be constant, this has solution

T
J‘g‘
e 0=e P (2.15b)
o
u§ Substituting in eqn (2.14g) for A gives
oL
B
ki i=1-2t (2.15¢)
X In2
oy
::g and hence, integrating eqns (2.14a) and (2.130), M {t) and ¢(1, 7) become
2 0 D\ ]
= e ¥ 2.15d
§ M) MDGXP[V( 2}n2) ‘. { )
£ 0 : :
3 0 1 2 3 and
Cell age 1 (days) Di\ -
® #t, 1) = gyexp [ -y ( 1 - E2) Tl (2.15¢)
Fig. 211, (s} Meristematic cell number M (t} as given by eqn (2.14h) for § values of 1, 0.75, n

0.5, and 0.25 as indicated {My = 1 and 1, = 3 days, so that v = 0.23 day™"); (b) corre-
sponding age distribution function #(1) (eqn (2.14i)) (note that when 8 = 0.5, A =0, and
& = diy = 1/1, is constant),

Equation (2.15d) for M (t) is generally referred to as an exponential quadratic
function. It is symmetric about a maximum value given by

M(t,,) = Myexp(ive,,) (2.150)
which occurs at time
misans that the meristematic cell population and its age distribution are constant. L= 1§_ 2 (2.15g)
For 0 <@ <4 A<0andin this case M(t) is a decreasing function with old "D

cells predominating,
1t should be noted that eqn (2.14¢) for ¢, is indeterminate when 4 = 0. How-

sver, in this case ¢(1) can be derived directly from the differential equation (2.130)
to be

Itis convenient to express M({t) and ¢(r) in terms of t, rather than D, in which
case eqns (2.15d) and (2.15¢) become

M(t) = My exp [v(l - §-:m) :] (2.15h)

m

#(1) = ¢y, (2.14))
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i, ) = %ﬁxp[mv(l - Ei:) }

Mote that d, is still defined by eqn (2.14e) but‘ is now a function of time ¢, through
the dependence of 4 on ¢ in eqn (2.15¢), and is given by
‘ (1 —t/t )y
Yo = I Y exptttn)in 2]

and

(2.151)

N

Meristematic cell number M

0 5 10 15 20
Time ¢ (days)
(a)

-~ 05 - T=14

7

<

o 04 - T role

= 24

2

% 0.3

:% — =0

8 02

% 0

E

] 0.1

o

g T T 1

g 0 5 10 15 ) ;’«ﬂ
Time ¢ (days

)

: [ i i i 2.15h) with M, =1 and
Fig. 211 {a) Meristematic cell number M(f) as given by egn ( . =18
zﬁw 3 days, so that v = 0.23 day™" and 1, = 10 days; (t?) corrcspcndmg age distribution
function $(t, ty feqn (2.158)) of celis of age 0, $1,, and 1, in response to time .

(2.15) -

— iy

* meristematic, then the rate of production of the
- of production of meristematic cells. The rate o

- cells by N and using eqn (2.14g) for 4, is given by

- interesting and challenging mathematical
~beintegrated to give (Exercise 27

Some subjects of general importance 71

Fort=1,, A =0 and #y defined by eqn (2.14¢) is indeterminate as discussed
above. In this case, eqn (2.14k) again applies, i.c. #o = 1/t,. When computing ¢
care should be taken to avoid any problems of this nature. M {t) and the cor-
responding age distribution (1, t), for = 0, f,, 14, are illustrated in Figs 2.12.
It can be seen from Fig. 2.12b that initially young cells predominate whereas, as
would be expected, this is reversed as time progresses.

243 Production of differentiating cells

The analysis of the previous section gives rise

10 non-meristematic or differ-
entiating cells. If there are no differentiating ce

lls and the population is purely
se cells is given by eqn (2.13f). In
duced, eqn (2.14a) defines the rate
{ production of differentiating cells
) and (2.14a) which, denoting these

the situation where differentiating cells are pro.

is therefore the difference between eqns (2.13f

dN Ing

e 5 e Y A

T in3 {2.16a)

Substituting for 6, M, and D from eqns (2.15b), (2.15h), and (2.1 Sg) gives

dN o Z@Q tex vl wf_ !
dt \ ¢, p. 2,,) |

At time ¢ = 0 there are no differentiating cells, so that N(t=0)=0 It is an
problem to show that eqn {2.16b) can

(2.16b)

N P ) e () e
7P A R O B
i 12 /oy N\ i .
x {crf(i vtm) + sgn{t — fm)erf{(;;}m) [t~ cm{u, (2.16¢)

“where the error function is defined by

erf(z) = j-; jl exp(— x?)dx,

(2.16d)
0
the sign function by
sign of z z # 0, X
= 2.16
sgn(z) {0 2=0, (2.16e)
and
[z} = modulus of z. (2.160)

~In practice, it is perhaps easier to integrate eqn (2.16b) numericall

y rather than
use the analytical solution (2.16¢). The ideal

language for doing so is ACSL., which
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10 -

Cell number

0 10 20 30
Time 1 (days)

Fig. 2.13. Menstematic cell number M {1}, differentiating cell number N(1) (brokgn curves s
as indicated), and total cell number N + M ({full curve) for the model of Section 2.4.3.

Mith s given by eqn (2.15h) and Nit) by eqn (2.16c). Parameter values are M, =1,
v=023day™" and t,, = 10 day.

was discussed in Chapter 1. The solutions for M (identical with that of Fig, 2.12a),

N, and the total cell number M + N are illustrated in Fig. 2.13, where it can be

seen that the growth of the total cell number follows the expected sigmoidal
patiern,

Exercises

21 {a) Derive eqn (2.8b) for the reaction scheme of eqn (2.8a).
(b} Show that eqn (2.8b) has 2 point of inflexion at §/K = 14/3.

2.2 {a) Derive eqn (2.8d} for the reaction scheme of eqn {2.8¢).

() Show that egn (2.8d) has & point of inflexion given by eqn (2.8e).

{e} Show that eqn (2.8} also has a point of inflexion given by eqn (2.8¢).
23 (a) Show that in the limit § -0 ©qn (2.9j) (the non-rectangular hyperbola) reduces
to eqn (2.9g). ‘

(b} Show that eqn (2.9j) is equivalent to eqn (2.91) when § = 1. N i

€} Show that the initial slope of the non-rectangular hyperbola (eqn (2.99)) is « (eqn
{29k, N

(d} Show that the asympiote of the non-rectangular hyperbola (eqn (2.9))) is y,, (eqn
{2901

Hent, For part (a) use the binomial expansion in the form

nn 1)

nin -~ 1 ~ 2)
(T x) = 1+ ax + R R
dne

i x> 4 |x|<landn# —1, (E23a)
where

mt = mim - 1)(m—2)...321 (E2.3b)

e

e

oe o s

80, use the series expansion for e*:

‘27. Derive eqn (2.16¢) for the time course of the number of differentiati
model presented in Section 2.4.3. This is quite a difficult problem.

e
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and is termed m factorial, Note that,

although not required here, when n w
€xpansion is

~ | the series
LI IS I JEUINE S

24. {a} Derive the constraint (2.101} for the bi-substrate Michael
scheme,

(b} Derive eqn (2.10m) for the speed of the bi-substrate Michael
scheme.

(E2.3¢)

ts-Menten reaction
s~ Menten reaction

25. (a) Derive eqn (2.11h} for the speed of the Michael
competitive inhibitor,

(b} Derive eqn (2.12j) for the speed of the Michael
non-competitive inhibitor.

is~Menten reaction with a fully

is-Menten equation with a fully

26. {a) Show that o is given by eqn (2.14e} for the scheme Hlustrated in Fig. 2.10, as
discussed in Section 2.4,

(b) Derive eqn (2.14f) for 2 for this model.
{c) Show that in the limit 4 - 0, ¢y as defined by eqn (2.14f) reduces to (2.141). To do

xl qu X )
e =1 '+VX+'“2“§“'+ 3'“'4“ (E2.6a)

ng cells for the






