COURSES

-> About this Resource
Scope *______
Map *____

-> Preliminary Courses
Contents & Objectives *__________________
Map *____
-> Botany
Contents & Objectives *__________________
Map *____
-> Axis Typology Patterns
Typology basis *___________
Pictograms *_________
Sexuality & development *___________________
Growth *______
Branching rhythms *______________
Branching delays *_____________
Branching positional *________________
Branching arrangement *__________________
Axis orientation *_____________
Architectural models *________________
-> Architectural Unit
About Arc. Models *______________
Models limitations *______________
Architectural Units *______________
Reiteration *_________
Sequence of development *___________________
Morphogenetic gradients *___________________
Physiological age *_____________
-> An Example
Wild Cherry (young) *_______________
Wild Cherry (adult) *______________
Wild Cherry (mature) *________________
Quiz *____
Case study Quiz *_____________
Supplementary resources *____________________

-> Eco-Physiology
Contents & Objectives *__________________
Map *____
-> Growth Factors
Factors affecting Growth *___________________
Endogenous Processes *_________________
Environmental Factors *_________________
Thermal Time *___________
-> Light interaction
P.A.R. *_____
Light absorption *_____________
Photosynthesis *___________
Respiration *_________
Maintenance respiration *__________________
L.U.E. Model *__________
Density effect *___________
Density effect on crop *__________________
-> Biomass
Biomass Pool *__________
Biomass Partitioning *_______________
Crop models *__________
A Crop model example *__________________
Quiz *____
Supplementary resources *___________________

-> Applied Mathematics
Contents & Objectives *__________________
Map *____
-> Probabilities
Section contents *____________
Discrete Random Variable *___________________
Expected value, Variance *___________________
Properties *________
-> Useful Laws
Bernoulli Trials *___________
Binomial Law *__________
Geometric Law *____________
Negative Binomial Law *_________________
-> Dynamic systems
Section contents *_____________
Useful functions *____________
Beta density *__________
Exercises *________
Negative Exponential *________________
Systems functions *______________
Discrete dynamic systems *___________________
Parameter Identification *__________________
Parameter estimation *________________
Supplementary Resources *____________________


-> GreenLab courses
GreenLab presentation *__________________
-> Overview
Presentation & Objectives *____________________
Map *____
Growth and components *___________________
Plant architecture *_______________
Biomass production *________________
Modelling - FSPM *______________
GreenLab principles *________________
Applications *__________
Supplementary resources *_____________________
-> Principles
Presentation & Objectives *____________________
Map *____
-> About modelling
Scientific disciplines *________________
Organs: tree components *___________________
Factors affecting growth *___________________
Model-simulation workflow *____________________
GreenLab inherits from *__________________
GreenLab positioning *_________________
The growth cycle *______________
Inside the growth cycle *___________________
Implementations *______________
Supplementary resources *____________________
-> Development
Presentation & Objectives *____________________
Map *____
Modelling Scheme *______________
Tree traversal modes *________________
-> Stochastic modelling
Principles *_______
-> Development
Growth Rhythm *____________
Damped growth *____________
Viability *______
Rhythmic axis *___________
Branching *________
Stochastic automaton *_________________
-> Organogenesis equations
Principles *_______
Organ cohorts *___________
Organ numbering *_____________
Substructure factorization *____________________
Stochastic case *____________
-> Structure construction
Construction modes *_______________
Construction basis *______________
Axis of development *________________
Stochastic reconstruction *___________________
Implicit construction *________________
Explicit construction *________________
3D construction *____________
Supplementary resources *____________________
-> Production-Expansion
Presentation & Objectives *____________________
Map *____
-> EcoPhysiology reminders
Relevant concepts *______________
Temperature *__________
Light interception *______________
Photosynthesis *___________
Biomass common pool *_________________
Density *______
-> Principals
Growth cycle *__________
Refining PbMs *___________
Organ cohorts *___________
GreenLab vs PbM & FSPM *___________________
-> GreenLab's equations
Summary *_______
Production equation *_______________
Plant demand *__________
Organ dimensions *______________
A dynamic system view *__________________
Equation terms *____________
Full Model *________
Model behaviour *______________
Supplementary resources *____________________
-> Applications
Presentation & Objectives *____________________
Map *____
-> Measurements
Agronomic traits *_____________
Mesurable/hidden param. *___________________
Fitting procedure *______________
-> Fitting structure
Principles *_______
-> Development
Simple development *_______________
Damped growth *____________
Rhythmic growth *_____________
Rhythmic growth samples *___________________
Mortality *_______
Branching *________
-> Crown analysis
Analysis principles *______________
Equations *________
Example / Exercise *_______________
-> Case study
Plant Architecture *______________
Development simulation *__________________
Introducing Biomass *_______________
Biomass partitioning *_______________
Equilibrium state *_____________
Supplementary resources *____________________

-> Tools (software)
Presentation & Objectives *_____________________
Map *____
Fitting, Stats *___________
Simulation *_________
Online tools *__________

Preliminary Course

Botany. Architectural Analysis

Axis typology.


Continuous and rhythmic growth
    Continuous growth
      In continuous growth, both organogenesis and elongation are continuous, stable and regular.
      Axis length increases and leaf appearances are regular.

      Continuous Growth
      Continuous growth
          Elongation follows organogenesis and both processes are stable and regular as shown by the coconut palm (Drawings and Photo D. Barthélémy, CIRAD)


    Rhythmic growth
      In rhythmic growth, organogenesis is not continuous, showing pauses between organ creation phases. Elongation is also periodic. Rhythmic growth builds growth units, corresponding to organogenesis cycles.

      Rhythmic growth
      Rhythmic growth (Drawings and Photo D. Barthélémy, CIRAD)
          Organogenesis is not continuous, and, on the rubber stem elongation occurs with a constant delay


    Rhythmic growth: pre-formation and neo-formation processes

      In the case of rhythmic growth, all the metamers and organs of the future elongated shoot may be present at an embryonic stage in a bud before the elongation of the shoot deriving from it. In this case the shoot is referred to as pre-formed and its constitutive organs as pre-formed organs or the pre-formation process.

      In other cases of rhythmic growth, more organs than those included at an embryonic stage in the bud can be elongated: these supplementary, non-preformed elements are referred to as neo-formed organs or the neo-formation process.

      This terminology was introduced by Hallé and al. in 1978, but first referred to by Critchfield, in 1960, defining early leaves and late leaves for pre-formed leaves and neo-formed leaves, respectively.

      Rhythmic growth. Preformation and Neoformation
      Pre-formed and neo-formed shoots (Photo and drawings D. Barthélémy and Y. Caraglio, CIRAD)
          Top, right: pre-formed, pref-ormed and neo-formed, neo-formed leaves and their elongated shoots.
          Left: pre-formed and neo-formed shoot portions on a young tree, showing different characteristics on the pre-formed shoot portion.
          Bottom, right: Close up of a Field Elm pre-formed shoot.

Bibliography

Hallé, F., Oldemann, R.A.A., Tomlinson, P.B. 1978. Tropical trees and forests. Berlin: Springer-Verlag.

Critchfield W.B. 1960. Leaf dimorphism in Populus trichocarpa. American Journal of Botany, 47, pp. 699-711.

Definition

Preformation
Botany. In rythmic growth, qualifies a shoot (a growth unit part) those componants are preformed in the bud before elongation. See also Neoformation

Definition

Neoformation
Botany. In rythmic growth, qualifies a shoot (a growth unit part) those componants are not preformed in the bud before elongation. See also Preformation