COURSES

-> About this Resource
Scope *______
Map *____

-> Preliminary Courses
Contents & Objectives *__________________
Map *____
-> Botany
Contents & Objectives *__________________
Map *____
-> Axis Typology Patterns
Typology basis *___________
Pictograms *_________
Sexuality & development *___________________
Growth *______
Branching rhythms *______________
Branching delays *_____________
Branching positional *________________
Branching arrangement *__________________
Axis orientation *_____________
Architectural models *________________
-> Architectural Unit
About Arc. Models *______________
Models limitations *______________
Architectural Units *______________
Reiteration *_________
Sequence of development *___________________
Morphogenetic gradients *___________________
Physiological age *_____________
-> An Example
Wild Cherry (young) *_______________
Wild Cherry (adult) *______________
Wild Cherry (mature) *________________
Quiz *____
Case study Quiz *_____________
Supplementary resources *____________________

-> Eco-Physiology
Contents & Objectives *__________________
Map *____
-> Growth Factors
Factors affecting Growth *___________________
Endogenous Processes *_________________
Environmental Factors *_________________
Thermal Time *___________
-> Light interaction
P.A.R. *_____
Light absorption *_____________
Photosynthesis *___________
Respiration *_________
Maintenance respiration *__________________
L.U.E. Model *__________
Density effect *___________
Density effect on crop *__________________
-> Biomass
Biomass Pool *__________
Biomass Partitioning *_______________
Crop models *__________
A Crop model example *__________________
Quiz *____
Supplementary resources *___________________

-> Applied Mathematics
Contents & Objectives *__________________
Map *____
-> Probabilities
Section contents *____________
Discrete Random Variable *___________________
Expected value, Variance *___________________
Properties *________
-> Useful Laws
Bernoulli Trials *___________
Binomial Law *__________
Geometric Law *____________
Negative Binomial Law *_________________
-> Dynamic systems
Section contents *_____________
Useful functions *____________
Beta density *__________
Exercises *________
Negative Exponential *________________
Systems functions *______________
Discrete dynamic systems *___________________
Parameter Identification *__________________
Parameter estimation *________________
Supplementary Resources *____________________


-> GreenLab courses
GreenLab presentation *__________________
-> Overview
Presentation & Objectives *____________________
Map *____
Growth and components *___________________
Plant architecture *_______________
Biomass production *________________
Modelling - FSPM *______________
GreenLab principles *________________
Applications *__________
Supplementary resources *_____________________
-> Principles
Presentation & Objectives *____________________
Map *____
-> About modelling
Scientific disciplines *________________
Organs: tree components *___________________
Factors affecting growth *___________________
Model-simulation workflow *____________________
GreenLab inherits from *__________________
GreenLab positioning *_________________
The growth cycle *______________
Inside the growth cycle *___________________
Implementations *______________
Supplementary resources *____________________
-> Development
Presentation & Objectives *____________________
Map *____
Modelling Scheme *______________
Tree traversal modes *________________
-> Stochastic modelling
Principles *_______
-> Development
Growth Rhythm *____________
Damped growth *____________
Viability *______
Rhythmic axis *___________
Branching *________
Stochastic automaton *_________________
-> Organogenesis equations
Principles *_______
Organ cohorts *___________
Organ numbering *_____________
Substructure factorization *____________________
Stochastic case *____________
-> Structure construction
Construction modes *_______________
Construction basis *______________
Axis of development *________________
Stochastic reconstruction *___________________
Implicit construction *________________
Explicit construction *________________
3D construction *____________
Supplementary resources *____________________
-> Production-Expansion
Presentation & Objectives *____________________
Map *____
-> EcoPhysiology reminders
Relevant concepts *______________
Temperature *__________
Light interception *______________
Photosynthesis *___________
Biomass common pool *_________________
Density *______
-> Principals
Growth cycle *__________
Refining PbMs *___________
Organ cohorts *___________
GreenLab vs PbM & FSPM *___________________
-> GreenLab's equations
Summary *_______
Production equation *_______________
Plant demand *__________
Organ dimensions *______________
A dynamic system view *__________________
Equation terms *____________
Full Model *________
Model behaviour *______________
Supplementary resources *____________________
-> Applications
Presentation & Objectives *____________________
Map *____
-> Measurements
Agronomic traits *_____________
Mesurable/hidden param. *___________________
Fitting procedure *______________
-> Fitting structure
Principles *_______
-> Development
Simple development *_______________
Damped growth *____________
Rhythmic growth *_____________
Rhythmic growth samples *___________________
Mortality *_______
Branching *________
-> Crown analysis
Analysis principles *______________
Equations *________
Example / Exercise *_______________
-> Case study
Plant Architecture *______________
Development simulation *__________________
Introducing Biomass *_______________
Biomass partitioning *_______________
Equilibrium state *_____________
Supplementary resources *____________________

-> Tools (software)
Presentation & Objectives *_____________________
Map *____
Fitting, Stats *___________
Simulation *_________
Online tools *__________

GreenLab Course

Development

Simulating plant organogenesis


The different levels of botanical plant structural elements (i.e. growth units, axis, architectural unit, and reiteration) can be generated using a dual scale automaton (Zhao, X. et al, 2001).

Micro-states

    The phytomer (metamer), the fundamental structural unit of the plant body, is attached to a micro-state. In order to reflect the botanical typology, several micro-states usually need to be defined for a given physiological age.
    A common usual framework leads to a micro-state Mii,a being defined from both the physiological age of the internode (i) and the physiological age of its axillary bud (a).


      Physiological ages, metamer and micro-state (Drawing X. Zhao, LIAMA, CASIA)
        The physiological age of the micro-state internode's is 1, while the physiological age of its axillary bud is 3.



    At a given physiological age, a simple automaton can generate a growth unit (or a full axis portion in case of continuous growth) thanks to micro-state successions.
    A growth unit is thus defined by a list of micro-states with their occurrences.

    A micro-state sequence building a growth unit is called a macro-state

    In the following example, this macro-state could be codified as:
    ((Mi1,3, 2) , (Mi1,2,1) ), describing a growth unit of three metamers of physiological age 1, respectively bearing axillary buds of physiological ages 3, 3, and 2.


      Micro-states, and a growth unit (Drawing X. Zhao, LIAMA, CASIA)
        The automaton generates the sequence ((Mi1,3, 2) , (Mi1,2,1) ) and builds a macro-state, representing a growth unit.

Bibliography

Zhao, X., De Reffye, P., Xiong, F. L., Hu, B. G., & Zhan, Z. G. 2001. Dual-scale automaton model for virtual plant development. The Chinese Journal of Computers, 24(60), pp. 608-617

Definition

Dual Scale Automaton (Botanical Automaton)
Computer Sciences. A Dual-Scale or Botanical Automaton is a specific Dual Scale finite-state machine. A particular finite-state machine is defined by a list of its states, and the triggering condition for each transition. In a Botanical Automaton, two lists are used corresponding respectively to the micro-state transitions (at the phytomer level) and to the macro-state transitions (at the growth unit level). This notion was introduced by Xing Zhao in 2001.