COURSES

-> About this Resource
Scope *______
Map *____

-> Preliminary Courses
Contents & Objectives *__________________
Map *____
-> Botany
Contents & Objectives *__________________
Map *____
-> Axis Typology Patterns
Typology basis *___________
Pictograms *_________
Sexuality & development *___________________
Growth *______
Branching rhythms *______________
Branching delays *_____________
Branching positional *________________
Branching arrangement *__________________
Axis orientation *_____________
Architectural models *________________
-> Architectural Unit
About Arc. Models *______________
Models limitations *______________
Architectural Units *______________
Reiteration *_________
Sequence of development *___________________
Morphogenetic gradients *___________________
Physiological age *_____________
-> An Example
Wild Cherry (young) *_______________
Wild Cherry (adult) *______________
Wild Cherry (mature) *________________
Quiz *____
Case study Quiz *_____________
Supplementary resources *____________________

-> Eco-Physiology
Contents & Objectives *__________________
Map *____
-> Growth Factors
Factors affecting Growth *___________________
Endogenous Processes *_________________
Environmental Factors *_________________
Thermal Time *___________
-> Light interaction
P.A.R. *_____
Light absorption *_____________
Photosynthesis *___________
Respiration *_________
Maintenance respiration *__________________
L.U.E. Model *__________
Density effect *___________
Density effect on crop *__________________
-> Biomass
Biomass Pool *__________
Biomass Partitioning *_______________
Crop models *__________
A Crop model example *__________________
Quiz *____
Supplementary resources *___________________

-> Applied Mathematics
Contents & Objectives *__________________
Map *____
-> Probabilities
Section contents *____________
Discrete Random Variable *___________________
Expected value, Variance *___________________
Properties *________
-> Useful Laws
Bernoulli Trials *___________
Binomial Law *__________
Geometric Law *____________
Negative Binomial Law *_________________
-> Dynamic systems
Section contents *_____________
Useful functions *____________
Beta density *__________
Exercises *________
Negative Exponential *________________
Systems functions *______________
Discrete dynamic systems *___________________
Parameter Identification *__________________
Parameter estimation *________________
Supplementary Resources *____________________


-> GreenLab courses
GreenLab presentation *__________________
-> Overview
Presentation & Objectives *____________________
Map *____
Growth and components *___________________
Plant architecture *_______________
Biomass production *________________
Modelling - FSPM *______________
GreenLab principles *________________
Applications *__________
Supplementary resources *_____________________
-> Principles
Presentation & Objectives *____________________
Map *____
-> About modelling
Scientific disciplines *________________
Organs: tree components *___________________
Factors affecting growth *___________________
Model-simulation workflow *____________________
GreenLab inherits from *__________________
GreenLab positioning *_________________
The growth cycle *______________
Inside the growth cycle *___________________
Implementations *______________
Supplementary resources *____________________
-> Development
Presentation & Objectives *____________________
Map *____
Modelling Scheme *______________
Tree traversal modes *________________
-> Stochastic modelling
Principles *_______
-> Development
Growth Rhythm *____________
Damped growth *____________
Viability *______
Rhythmic axis *___________
Branching *________
Stochastic automaton *_________________
-> Organogenesis equations
Principles *_______
Organ cohorts *___________
Organ numbering *_____________
Substructure factorization *____________________
Stochastic case *____________
-> Structure construction
Construction modes *_______________
Construction basis *______________
Axis of development *________________
Stochastic reconstruction *___________________
Implicit construction *________________
Explicit construction *________________
3D construction *____________
Supplementary resources *____________________
-> Production-Expansion
Presentation & Objectives *____________________
Map *____
-> EcoPhysiology reminders
Relevant concepts *______________
Temperature *__________
Light interception *______________
Photosynthesis *___________
Biomass common pool *_________________
Density *______
-> Principals
Growth cycle *__________
Refining PbMs *___________
Organ cohorts *___________
GreenLab vs PbM & FSPM *___________________
-> GreenLab's equations
Summary *_______
Production equation *_______________
Plant demand *__________
Organ dimensions *______________
A dynamic system view *__________________
Equation terms *____________
Full Model *________
Model behaviour *______________
Supplementary resources *____________________
-> Applications
Presentation & Objectives *____________________
Map *____
-> Measurements
Agronomic traits *_____________
Mesurable/hidden param. *___________________
Fitting procedure *______________
-> Fitting structure
Principles *_______
-> Development
Simple development *_______________
Damped growth *____________
Rhythmic growth *_____________
Rhythmic growth samples *___________________
Mortality *_______
Branching *________
-> Crown analysis
Analysis principles *______________
Equations *________
Example / Exercise *_______________
-> Case study
Plant Architecture *______________
Development simulation *__________________
Introducing Biomass *_______________
Biomass partitioning *_______________
Equilibrium state *_____________
Supplementary resources *____________________

-> Tools (software)
Presentation & Objectives *_____________________
Map *____
Fitting, Stats *___________
Simulation *_________
Online tools *__________

GreenLab Course

Production-Expansion

Full model equations


GreenLab Equations
    In the following equations
      n is the current cycle
      o is the organ type (internode, leaf, fruit, ring, root, etc.)
      p is the physiological age
      φo,p defines the sink function of organ o at physiological age p
      Q(n-1) is the biomass available in the common pool. By definition Q(0) defines the seed biomass.



    Structure: The Number of organs at cycle n, appeared at cycle t

      Ntp(n) = [ p≤q≤P up,q(t+1-n) ( Ntq(n-1) )bp,q(t+1-n) ] Ntp(n-1)

      where:
        up,q corresponds to the number of phytomers mp,q(t) in growth units of physiological age p appearing at growth cycle t
        bp,q corresponds to the number of axillary sub-structures of physiological age q in growth units of physiological age p that appeared at growth cycle t
        These sequences can be deterministic or stochastic.



    Plant demand at cycle n

      D(n) = Σo,p Σt1=n-l;n No,p(t1) . φo,p(t1-n+l)

      where:
        t1 stands for the different appearance cycles of cohort Co,p
        t1 stands for the different appearance cycles of cohort Co,p
        t1-n+l if therefore the age of the organ (belonging to [0..l])



    The biomass allocated to organs

      qo,p(n) = Q(n-1) . φo,p(i) / D(n)

      where i stands for the organ age (expressed in cycles since the beginning of expansion)



    The total functioning Leaf area S(n) at cycle n
      S(n) =     1    (   Σi = 1 ; Tb   ( Σj = 1 ; i   φb(j)   Q ( n - i + j - 1)   )   )
      e D ( n - i + j )






      where:
        φb(j) stands for the leaf blade sink function at age j
        i,j stands for the blade age with Tb >= i >= j
        Tb is the number of cycles before the leaf becomes senescent (the number of functional cycles)
        e is blade thickness (the SLW)



    The Production equation
      Q(n) =   E(n) . Sp   (   1 - exp ( -k   Sl(n)   )   )
      r Sp






      where:
        Q(n) is the fresh biomass produced at cycle n
        E(n) is an aggregate variable standing for the environmental resource conditions, typically LUE and PAR
        r represents the water resource, proportional to the Water Use Efficiency inverse (WUE-1)
        k stands for the Beer law extinction coefficient
        Sp stands for the projection area, as defined above
        Sl(n) stands for the total functional leaf area